Skip to main content
Log in

Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agledal L, Niere M, Ziegler M (2010) The phosphate makes a difference: cellular functions of NADP. Redox Rep 15:2–10. doi:10.1179/174329210X12650506623122

    Article  CAS  PubMed  Google Scholar 

  • Anderson SL, McIntosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol 173:2761–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borirak O, Koning LJ, van der Woude AD, Hoefsloot H, Dekker HL, Roseboom W, de Koster CG, Hellingwerf KJ (2015) Quantitative proteomics analysis of an ethanol- and a lactate-producing mutant strain of Synechocystis sp. PCC6803. Biotechnol Biofuels 8:111. doi:10.1186/s13068-015-0294-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai YP, Wolk CP (1990) Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172:3138–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauvat F, De Vries L, Van der Ende A, Van Arkel GA (1986) A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet 204:185–191. doi:10.1007/BF00330208

    Article  CAS  Google Scholar 

  • Choi Y-N, Park JM (2016) Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresour Technol 213:54–57. doi:10.1016/j.biortech.2016.02.056

    Article  CAS  PubMed  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai SH, Atsumi S (2013) Photosynthetic approaches to chemical biotechnology. Curr Opin Biotechnol 24:1031–1036. doi:10.1016/j.copbio.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production energy. Environ Sci 2:857–864

    CAS  Google Scholar 

  • Dexter J, Armshaw P, Sheahan C, Pembroke JT (2015) The state of autotrophic ethanol production in cyanobacteria. J Appl Microbiol 119:11–24. doi:10.1111/jam.12821

    Article  CAS  PubMed  Google Scholar 

  • Dienst D, Georg J, Abts T, Jakorew L, Kuchmina E, Börner T, Wilde A, Dürhing U, Enke H, Hess WR (2014) Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol Biofuels 7:21. doi:10.1186/1754-6834-7-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Galmozzi CV (2008) Mecanismo de regulación postraduccional de la glutamina sintetasa de tipo I en cianobacterias Tesis doctoral Universidad de Sevilla

  • Gao H, Xu X (2012) The cyanobacterial NAD kinase gene sll1415 is required for photoheterotrophic growth and cellular redox homeostasis in Synechocystis sp. strain PCC 6803. J Bacteriol 194:218–224. doi:10.1128/JB.05873-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science 5:9857–9865. doi:10.1039/c2ee22675h

    Article  CAS  Google Scholar 

  • Garcia-Dominguez M, Lopez-Maury L, Florencio FJ, Reyes JC (2000) A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. Strain PCC 6803 J Bacteriol 182(6):1507–1514. doi:10.1128/JB.182.6.1507-1514.2000

    CAS  PubMed  Google Scholar 

  • Hoppner TC, Doelle HW (1983) Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production Applied Microbiology and Biotechnology 17

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juntarajumnong W, Eaton-Rye JJ, Incharoensakdi A (2007) Two-component signal transduction in Synechocystis sp. PCC 6803 under phosphate limitation: role of acetyl phosphate. J Biochem Mol Biol 40:708–714

    CAS  PubMed  Google Scholar 

  • Kamarainen J, Knoop H, Stanford NJ, Guerrero F, Kalim Akhtar M, Aro E-M, Steuer R, Jones PR (2012) Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J Biotechnol 162:67–74. doi:10.1016/j.jbiotec.2012.07.193

    Article  CAS  PubMed  Google Scholar 

  • Kaplan NO, Ciotti MM (1957) [45] Enzymatic determination of ethanol. In: Methods in Enzymology, vol Volume 3. Academic Press, pp 253–255

  • Kawai S, Murata K (2008) Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem 72:919–930. doi:10.1271/bbb.70738

    Article  CAS  PubMed  Google Scholar 

  • Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013) Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9:e1003081. doi:10.1371/journal.pcbi.1003081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304. doi:10.1038/nrmicro.2016.32

    Article  CAS  PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Nakajima T, Kajihata S, Yoshikawa K, Matsuda F, Furusawa C, Hirasawa T, Shimizu H (2014) Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant Cell Physiol 55:1605–1612. doi:10.1093/pcp/pcu091

    Article  CAS  PubMed  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W (2012) Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 11:5286–5300. doi:10.1021/pr300504w

    Article  CAS  PubMed  Google Scholar 

  • Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56. doi:10.3109/10408419409113545

    Article  CAS  PubMed  Google Scholar 

  • Reyes JC, Florencio FJ (1994) A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bacteriol 176(5):1260–1267. doi:10.1128/jb.176.5.1260-1267.1994

  • Rippka R, Deruelles J, Waterbury JB, Herman M, Stanier RY (1979) Genetics assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:–61

  • Sambrook J, Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual 2nd Ed., Cold Spring HarborLaboratory, Cold Spring Harbor

  • Sengupta T, Bhushan M, Wangikar PP (2013) Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant. Photosynth Res 118:155–165. doi:10.1007/s11120-013-9935-x

    Article  CAS  PubMed  Google Scholar 

  • Slatyer B, Daday A, Smith GD (1983) The effects of acetaldehyde on nitrogenase, hydrogenase and photosynthesis in the cyanobacterium Anabaena cylindrica. Biochem J 212(3):755–758. doi:10.1042/bj2120755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W (2014) A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803. Mol Cell Proteomics 13:3519–3532. doi:10.1074/mcp.M113.035675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaans SK, Weusthuis RA, van der Oost J, Kengen SW (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:742. doi:10.3389/fmicb.2015.00742

    Article  PubMed  PubMed Central  Google Scholar 

  • Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21(2):179–211. doi:10.1016/S0168-6445(97)00056-9

    Article  CAS  Google Scholar 

  • Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S (2005) The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42:504–513. doi:10.1111/j.1365-313X.2005.02391.x

    Article  CAS  PubMed  Google Scholar 

  • Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ (2009) Characterization of an alcohol dehydrogenase from the cyanobacterium Synechocystis sp. strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system. J Bacteriol 191:4383–4391. doi:10.1128/JB.00183-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W (2012) RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:89. doi:10.1186/1754-6834-5-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa K, Hirasawa T, Ogawa K, Hidaka Y, Nakajima T, Furusawa C, Shimizu H (2013) Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol J 8:571–580. doi:10.1002/biot.201200235

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Niu X, Shi M, Pei G, Zhang X, Chen L, Zhang W (2015) Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 6:487. doi:10.3389/fmicb.2015.00487

    PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W (2015) Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Mol BioSyst 11:770–782. doi:10.1039/c4mb00651h

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeca Vidal.

Ethics declarations

Funding

This work was supported by a grant from Spanish National Research Council/Grant number: I3P-BPD2002-1.

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, R. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 101, 3473–3482 (2017). https://doi.org/10.1007/s00253-017-8138-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8138-3

Keywords