Abstract
The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Agledal L, Niere M, Ziegler M (2010) The phosphate makes a difference: cellular functions of NADP. Redox Rep 15:2–10. doi:10.1179/174329210X12650506623122
Anderson SL, McIntosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol 173:2761–2767
Borirak O, Koning LJ, van der Woude AD, Hoefsloot H, Dekker HL, Roseboom W, de Koster CG, Hellingwerf KJ (2015) Quantitative proteomics analysis of an ethanol- and a lactate-producing mutant strain of Synechocystis sp. PCC6803. Biotechnol Biofuels 8:111. doi:10.1186/s13068-015-0294-z
Cai YP, Wolk CP (1990) Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172:3138–3145
Chauvat F, De Vries L, Van der Ende A, Van Arkel GA (1986) A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet 204:185–191. doi:10.1007/BF00330208
Choi Y-N, Park JM (2016) Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresour Technol 213:54–57. doi:10.1016/j.biortech.2016.02.056
Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528
Desai SH, Atsumi S (2013) Photosynthetic approaches to chemical biotechnology. Curr Opin Biotechnol 24:1031–1036. doi:10.1016/j.copbio.2013.03.015
Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production energy. Environ Sci 2:857–864
Dexter J, Armshaw P, Sheahan C, Pembroke JT (2015) The state of autotrophic ethanol production in cyanobacteria. J Appl Microbiol 119:11–24. doi:10.1111/jam.12821
Dienst D, Georg J, Abts T, Jakorew L, Kuchmina E, Börner T, Wilde A, Dürhing U, Enke H, Hess WR (2014) Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol Biofuels 7:21. doi:10.1186/1754-6834-7-21
Galmozzi CV (2008) Mecanismo de regulación postraduccional de la glutamina sintetasa de tipo I en cianobacterias Tesis doctoral Universidad de Sevilla
Gao H, Xu X (2012) The cyanobacterial NAD kinase gene sll1415 is required for photoheterotrophic growth and cellular redox homeostasis in Synechocystis sp. strain PCC 6803. J Bacteriol 194:218–224. doi:10.1128/JB.05873-11
Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science 5:9857–9865. doi:10.1039/c2ee22675h
Garcia-Dominguez M, Lopez-Maury L, Florencio FJ, Reyes JC (2000) A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. Strain PCC 6803 J Bacteriol 182(6):1507–1514. doi:10.1128/JB.182.6.1507-1514.2000
Hoppner TC, Doelle HW (1983) Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production Applied Microbiology and Biotechnology 17
Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425
Juntarajumnong W, Eaton-Rye JJ, Incharoensakdi A (2007) Two-component signal transduction in Synechocystis sp. PCC 6803 under phosphate limitation: role of acetyl phosphate. J Biochem Mol Biol 40:708–714
Kamarainen J, Knoop H, Stanford NJ, Guerrero F, Kalim Akhtar M, Aro E-M, Steuer R, Jones PR (2012) Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J Biotechnol 162:67–74. doi:10.1016/j.jbiotec.2012.07.193
Kaplan NO, Ciotti MM (1957) [45] Enzymatic determination of ethanol. In: Methods in Enzymology, vol Volume 3. Academic Press, pp 253–255
Kawai S, Murata K (2008) Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem 72:919–930. doi:10.1271/bbb.70738
Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013) Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9:e1003081. doi:10.1371/journal.pcbi.1003081
Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304. doi:10.1038/nrmicro.2016.32
Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322
Nakajima T, Kajihata S, Yoshikawa K, Matsuda F, Furusawa C, Hirasawa T, Shimizu H (2014) Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant Cell Physiol 55:1605–1612. doi:10.1093/pcp/pcu091
Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69
Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W (2012) Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 11:5286–5300. doi:10.1021/pr300504w
Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56. doi:10.3109/10408419409113545
Reyes JC, Florencio FJ (1994) A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bacteriol 176(5):1260–1267. doi:10.1128/jb.176.5.1260-1267.1994
Rippka R, Deruelles J, Waterbury JB, Herman M, Stanier RY (1979) Genetics assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:–61
Sambrook J, Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual 2nd Ed., Cold Spring HarborLaboratory, Cold Spring Harbor
Sengupta T, Bhushan M, Wangikar PP (2013) Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant. Photosynth Res 118:155–165. doi:10.1007/s11120-013-9935-x
Slatyer B, Daday A, Smith GD (1983) The effects of acetaldehyde on nitrogenase, hydrogenase and photosynthesis in the cyanobacterium Anabaena cylindrica. Biochem J 212(3):755–758. doi:10.1042/bj2120755
Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W (2014) A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803. Mol Cell Proteomics 13:3519–3532. doi:10.1074/mcp.M113.035675
Spaans SK, Weusthuis RA, van der Oost J, Kengen SW (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:742. doi:10.3389/fmicb.2015.00742
Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21(2):179–211. doi:10.1016/S0168-6445(97)00056-9
Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S (2005) The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42:504–513. doi:10.1111/j.1365-313X.2005.02391.x
Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ (2009) Characterization of an alcohol dehydrogenase from the cyanobacterium Synechocystis sp. strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system. J Bacteriol 191:4383–4391. doi:10.1128/JB.00183-09
Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W (2012) RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:89. doi:10.1186/1754-6834-5-89
Yoshikawa K, Hirasawa T, Ogawa K, Hidaka Y, Nakajima T, Furusawa C, Shimizu H (2013) Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol J 8:571–580. doi:10.1002/biot.201200235
Zhang Y, Niu X, Shi M, Pei G, Zhang X, Chen L, Zhang W (2015) Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 6:487. doi:10.3389/fmicb.2015.00487
Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W (2015) Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Mol BioSyst 11:770–782. doi:10.1039/c4mb00651h
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This work was supported by a grant from Spanish National Research Council/Grant number: I3P-BPD2002-1.
Conflict of interest
The author declares that she has no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Electronic supplementary material
ESM 1
(PDF 176 kb)
Rights and permissions
About this article
Cite this article
Vidal, R. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 101, 3473–3482 (2017). https://doi.org/10.1007/s00253-017-8138-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-017-8138-3


