Applied Microbiology and Biotechnology

, Volume 101, Issue 6, pp 2533–2547 | Cite as

Development and validation of a new dynamic in vitro model of the piglet colon (PigutIVM): application to the study of probiotics

  • Mickaël Alain Fleury
  • Olivier Le Goff
  • Sylvain Denis
  • Frédérique Chaucheyras-Durand
  • Eric Jouy
  • Isabelle Kempf
  • Monique Alric
  • Stéphanie Blanquet-DiotEmail author
Methods and protocols


For ethical, technical, regulatory, and cost reasons, in vitro methods are increasingly used as an alternative to in vivo experimentations. The aim of the present study was to validate, according to in vivo data in living animals, a new in vitro model of the piglet colon, the PigutIVM, under both control conditions and antibiotic disturbance by the widely used colistin. The PigutIVM reproduces the main biotic and abiotic parameters of the piglet colon: temperature, pH, retention time, supply of ileal effluents, complex, and metabolically active microbiota and self-maintained anaerobiosis. Under both control and antibiotic-treated conditions, qPCR analyses showed that the main bacterial populations of piglet gut microbiota were similar in vitro and in vivo, with Pearson correlation coefficient higher than 0.9. During colistin administration, both in piglets and in the in vitro model, a significant decrease in Escherichia coli populations was observed together with changes in microbial composition of subdominant populations. SCFA concentrations were similar in vitro and in vivo and were not modified by colistin. Interestingly, the administration of the probiotic Saccharomyces cerevisiae var. boulardii CNCM I-1079 led in vitro to a decrease in E. coli levels, as previously observed when the antibiotic treatment was applied. This new in vitro model of the piglet colon provides a flexible, reproducible, and cost-effective tool for the screening of drugs or new dietary compounds, such as pre- or probiotics. It will be helpful for researchers, feed producers, or veterinarians when developing innovative non-antibiotic strategies.


In vitro model Piglet Gut microbiota Colistin Probiotic Saccharomyces cerevisiae var. boulardii 



This study was supported by the Côtes d’Armor General Council and the Brittany and Auvergne regions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

253_2017_8122_MOESM1_ESM.pdf (382 kb)
ESM 1 (PDF 382 kb)


  1. Aarestrup FM, Duran CO, Burch DG (2008) Antimicrobial resistance in swine production. Anim Health Res Rev 9:135–148. doi: 10.1017/S1466252308001503 CrossRefPubMedGoogle Scholar
  2. Bian G, Ma S, Zhu Z, Su Y, Zoetendal EG, Mackie R, Liu J, Mu C, Huang R, Smidt H, Zhu W (2016) Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ Microbiol 18:1566–1577. doi: 10.1111/1462-2920.13272 CrossRefPubMedGoogle Scholar
  3. Bindelle J, Pieper R, Montoya CA, Van Kessel AG, Leterme P (2011) Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract. FEMS Microbiol Ecol 76:553–563. doi: 10.1111/j.1574-6941.2011.01074.x CrossRefPubMedGoogle Scholar
  4. Blanquet-Diot S, Denis S, Chalancon S, Chaira F, Cardot JM, Alric M (2012) Use of artificial digestive systems to investigate the biopharmaceutical factors influencing the survival of probiotic yeast during gastrointestinal transit in humans. Pharm Res 29:1444–1453. doi: 10.1007/s11095-011-0620-5 CrossRefPubMedGoogle Scholar
  5. Brousseau JP, Talbot G, Beaudoin F, Lauzon K, Roy D, Lessard M (2015) Effects of probiotics Pediococcus acidilactici strain MA18/5 M and Saccharomyces cerevisiae subsp. boulardii strain SB-CNCM I-1079 on fecal and intestinal microbiota of nursing and weanling piglets. J Anim Sci 93:5313–5326. doi: 10.2527/jas.2015-9190 CrossRefPubMedGoogle Scholar
  6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley CA, Kelley ST, Knights D, Koenig JE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. doi: 10.1073/pnas.1000080107 CrossRefPubMedGoogle Scholar
  8. Chaucheyras-Durand F, Durand H (2009) Probiotics in animal nutrition and health. Benef Microbes 1:3–9. doi: 10.3920/BM2008.1002 CrossRefGoogle Scholar
  9. Chaucheyras-Durand F, Madic J, Doudin F, Martin C (2006) Biotic and abiotic factors influencing in vitro growth of Escherichia coli O157:H7 in ruminant digestive contents. Appl Environ Microbiol 72:4136–4142. doi: 10.1128/AEM.02600-05 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Collier CT, Carroll JA, Ballou MA, Starkey JD, Sparks JC (2011) Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J Anim Sci 89:52–58. doi: 10.2527/jas.2010-2944 CrossRefPubMedGoogle Scholar
  11. R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria.Google Scholar
  12. Davis SS, Illum L, Hinchcliffe M (2001) Gastrointestinal transit of dosage forms in the pig. J Pharm Pharmacol 53:33–39. doi: 10.1211/0022357011775163 CrossRefPubMedGoogle Scholar
  13. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. doi: 10.1128/AEM.03006-05 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi: 10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  15. EU 2010 (2010) Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official journal of the European Union L276/33–276/79.Google Scholar
  16. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. London, OntarioGoogle Scholar
  17. Fleury MA, Jouy E, Eono F, Cariolet R, Couet W, Gobin P, Le Goff O, Blanquet-Diot S, Alric M, Kempf I (2016) Impact of two different colistin dosing strategies on healthy piglet fecal microbiota. Res Vet Sci 107:152–160. doi: 10.1016/j.rvsc.2016.06.003 CrossRefPubMedGoogle Scholar
  18. Furet J-P, Firmesse O, Gourmelon M, Bridonneau C, Tap J, Mondot S, Doré J, Corthier G (2009) Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol Ecol 68:351–362. doi: 10.1111/j.1574-6941.2009.00671.x CrossRefPubMedGoogle Scholar
  19. Gérard-Champod M, Blanquet-Diot S, Cardot J-M, Bravo D, Alric M (2010) Development and validation of a continuous in vitro system reproducing some biotic and abiotic factors of the veal calf intestine. Appl Environ Microbiol 76:5592–5600. doi: 10.1128/AEM.00524-10 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hancox LR, Le Bon M, Richards PJ, Guillou D, Dodd CER, Mellits KH (2015) Effect of a single dose of Saccharomyces cerevisiae Var. boulardii on the occurrence of porcine neonatal diarrhoea. Animal 9:1756–1759. doi: 10.1017/S1751731114002687 CrossRefPubMedGoogle Scholar
  21. Isaacson R, Kim HB (2012) The intestinal microbiome of the pig. Anim Health Res Rev 13:100–109. doi: 10.1017/S1466252312000084 CrossRefPubMedGoogle Scholar
  22. Jensen BB, Jørgensen H (1994) Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl Environ Microbiol 60:1897–1904PubMedPubMedCentralGoogle Scholar
  23. Joint FAO/WHO (2006) Evaluation of certain veterinary drug residues in food: 66th report of the joint FAO/WHO expert committee on food additives. WHO technical Report Series n° 939. Rome, ItalyGoogle Scholar
  24. Jonathan MC, van den Borne JJGC, van Wiechen P, Souza da Silva C, Schols HA, Gruppen H (2012) In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem 133:889–897. doi: 10.1016/j.foodchem.2012.01.110
  25. Kempf I, Fleury MA, Drider D, Bruneau M, Sanders P, Chauvin C, Madec J-Y, Jouy E (2013) What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? Int J Antimicrob Agents 42:379–383. doi: 10.1016/j.ijantimicag.2013.06.012 CrossRefPubMedGoogle Scholar
  26. Khelaifia S, Drancourt M (2012) Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin Microbiol Infect 18:841–848. doi: 10.1111/j.1469-0691.2012.03913.x CrossRefPubMedGoogle Scholar
  27. Kim HB, Isaacson RE (2015) The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol 177:242–251. doi: 10.1016/j.vetmic.2015.03.014 CrossRefPubMedGoogle Scholar
  28. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE (2011) Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 153:124–133. doi: 10.1016/j.vetmic.2011.05.021 CrossRefPubMedGoogle Scholar
  29. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE (2012) Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc Natl Acad Sci 109:15485–15490. doi: 10.1073/pnas.1205147109 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kraler M, Schedle K, Schwarz C, Domig KJ, Pichler M, Oppeneder A, Wetscherek W, Prückler M, Pignitter M, Pirker KF, Somoza V, Heine D, Kneifel W (2015) Fermented and extruded wheat bran in piglet diets: impact on performance, intestinal morphology, microbial metabolites in chyme and blood lipid radicals. Arch Anim Nutr 69:378–398. doi: 10.1080/1745039X.2015.1075671 CrossRefPubMedGoogle Scholar
  31. Lalles J-P, Bosi P, Smidt H, Stokes CR (2007) Nutritional management of gut health in pigs around weaning. Proc Nutr Soc 66:260–268. doi: 10.1017/S0029665107005484 CrossRefPubMedGoogle Scholar
  32. Lamendella R, Santo Domingo JW, Ghosh S, Martinson J, Oerther DB (2011) Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol 11:1. doi: 10.1186/1471-2180-11-103 CrossRefGoogle Scholar
  33. Loh G, Eberhard M, Brunner RM, Hennig U, Kuhla S, Kleessen B, Metges CC (2006) Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J Nutr 136:1198–1202 doi: 0022-3166/06PubMedGoogle Scholar
  34. Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB (2014) Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J 8:1566–1576. doi: 10.1038/ismej.2014.12 CrossRefPubMedPubMedCentralGoogle Scholar
  35. McFarland LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 16:2202–2222. doi: 10.3748/wjg.v16.i18.2202 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187. doi: 10.1007/s002489900072 CrossRefPubMedGoogle Scholar
  37. Molist Gasa F, Ywazaki M, Gomez de Segura Ugalde A, Hermes RG, Gasa Gasó J, Pérez Hernández JF (2010) Administration of loperamide and addition of wheat bran to the diets of weaner pigs decrease the incidence of diarrhoea and enhance their gut maturation. Br J Nutr 103:879–885. doi: 10.1017/S0007114509992637
  38. Pajarillo EAB, Chae J-P, Balolong MP, Kim HB, Kang D-K (2014) Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol 60:140–146. doi: 10.2323/jgam.60.140 CrossRefGoogle Scholar
  39. Patil AK, Kumar S, Verma AK, Baghel RPS (2015) Probiotics as feed additives in weaned pigs: a review. Livest Res Int 3:31–39. doi: 10.3923/javaa.2011.2127.2134 Google Scholar
  40. Payne AN, Zihler A, Chassard C, Lacroix C (2012) Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 30:17–25. doi: 10.1016/j.tibtech.2011.06.011 CrossRefPubMedGoogle Scholar
  41. Pinloche E, Williams M, D’Inca R, Auclair E, Newbold CJ (2012) Use of a colon simulation technique to assess the effect of live yeast on fermentation parameters and microbiota of the colon of pig. J Anim Sci 90:353–355. doi: 10.2527/jas.53800 CrossRefPubMedGoogle Scholar
  42. Pivetta MR, Berto DA, Amorim AB, Saleh MAD, Pinheiro DF, Paulino M de LMV, Pinto JP de AN, Gonçalves HC (2014) Use of maltodextrin and a prebiotic in the feed of weaned piglets. Semina Ciênc Agrár 35:2129–2146. doi: 10.5433/1679-0359.2014v35n4p2129
  43. Rajilić-Stojanović M, Maathuis A, Heilig HG, Venema K, de Vos WM, Smidt H (2010) Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology 156:3270–3281. doi: 10.1099/mic.0.042044-0 CrossRefPubMedGoogle Scholar
  44. Rhouma M, Beaudry F, Letellier A (2016) Resistance to colistin: what is the fate for this antibiotic in pig production? Int J Antimicrob Agents 48:119–126. doi: 10.1016/j.ijantimicag.2016.04.008 CrossRefPubMedGoogle Scholar
  45. Rist VTS, Weiss E, Eklund M, Mosenthin R (2013) Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal 7:1067–1078. doi: 10.1017/S1751731113000062 CrossRefPubMedGoogle Scholar
  46. Robinson JA, Smolenski WJ, Ogilvie ML, Peters JP (1989) In vitro total-gas, CH4, H2, volatile fatty acid, and lactate kinetics studies on luminal contents from the small intestine, cecum, and colon of the pig. Appl Environ Microbiol 55:2460–2467PubMedPubMedCentralGoogle Scholar
  47. Saraoui T, Parayre S, Guernec G, Loux V, Montfort J, Le Cam A, Boudry G, Jan G, Falentin H (2013) A unique in vivo experimental approach reveals metabolic adaptation of the probiotic Propionibacterium freudenreichii to the colon environment. BMC Genomics 14:1. doi: 10.1186/1471-2164-14-911 CrossRefGoogle Scholar
  48. Tan CQ, Wei HK, Sun HQ, Long G, Ao JT, Jiang SW, Peng J (2015) Effects of supplementing sow diets during two gestations with konjac flour and Saccharomyces boulardii on constipation in peripartal period, lactation feed intake and piglet performance. Anim Feed Sci Technol 210:254–262. doi: 10.1016/j.anifeedsci.2015.10.013 CrossRefGoogle Scholar
  49. Tanner SA, Berner AZ, Rigozzi E, Grattepanche F, Chassard C, Lacroix C (2014) In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PLoS One 9:e94123. doi: 10.1371/journal.pone.0094123 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tran TH, Boudry C, Everaert N, Théwis A, Portetelle D, Daube G, Nezer C, Taminiau B, Bindelle J (2016) Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate. FEMS Microbiol Ecol 92(2). doi: 10.1093/femsec/fiv165
  51. Ueda K, Matteotti R, Assalia A, Gagner M (2006) Comparative evaluation of gastrointestinal transit and immune response between laparoscopic and open gastrectomy in a porcine model. J Gastrointest Surg 10:39–45. doi: 10.1016/j.gassur.2005.09.013 CrossRefPubMedGoogle Scholar
  52. Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, Van de Wiele T (2010) Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:5237–5246. doi: 10.1128/AEM.00759-10 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Van den Abbeele P, Roos S, Eeckhaut V, MacKenzie DA, Derde M, Verstraete W, Marzorati M, Possemiers S, Vanhoecke B, Van Immerseel F, Van de Wiele T (2012) Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol 5:106–115. doi: 10.1111/j.1751-7915.2011.00308.x
  54. Ye G, Qiu Y, He X, Zhao L, Shi F, Lv C, Jing B, Li Y (2015) Effect of two macrocephala flavored powder supplementation on intestinal morphology and intestinal microbiota in weaning pigs. Int J Clin Exp Med 8:1504–1514. doi: 10.2527/jas.2007-0668 PubMedPubMedCentralGoogle Scholar
  55. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36:808–813. doi: 10.2144/3605A0808 PubMedGoogle Scholar
  56. Zentek J, Gärtner S, Tedin L, Männer K, Mader A, Vahjen W (2013) Fenugreek seed affects intestinal microbiota and immunological variables in piglets after weaning. Br J Nutr 109:859–866. doi: 10.1017/S000711451200219X CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mickaël Alain Fleury
    • 1
    • 2
    • 3
  • Olivier Le Goff
    • 1
  • Sylvain Denis
    • 1
  • Frédérique Chaucheyras-Durand
    • 1
    • 4
  • Eric Jouy
    • 2
    • 3
  • Isabelle Kempf
    • 2
    • 3
  • Monique Alric
    • 1
  • Stéphanie Blanquet-Diot
    • 1
    Email author
  1. 1.UMR UCA INRA 454 MEDISCentre de Recherche en Nutrition Humaine, Université Clermont AuvergneClermont-FerrandFrance
  2. 2.Laboratoire de Ploufragan-Plouzané, ANSESPloufraganFrance
  3. 3.Université Bretagne LoireRennesFrance
  4. 4.Lallemand Animal NutritionBlagnacFrance

Personalised recommendations