Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae

Abstract

A β-1,4-mannanase, termed AoMan134A, that belongs to the GH 134 family was identified in the filamentous fungus Aspergillus oryzae. Recombinant AoMan134A was expressed in Pichia pastoris, and the purified enzyme produced mannobiose, mannotriose, mannotetraose, and mannopentaose from galactose-free β-mannan, with mannotriose being the predominant reaction product. The catalytic efficiency (k cat/K m ) of AoMan134A was 6.8-fold higher toward galactomannan from locust bean gum, than toward galactomannan from guar gum, but similar toward galactomannan from locust bean gum and glucomannan from konjac flour. After incubation at 70°C for 120 min, the activity of AoMan134A toward glucomannan decreased to 50% of the maximal activity at 30°C. AoMan134A retained 50% of its β-1,4-mannanase activity after heating at 90°C for 30 min, indicating that AoMan134A is thermostable. Furthermore, AoMan134A was stable within a neutral-to-alkaline pH range, as well as exhibiting stability in the presence of a range of organic solvents, detergents, and metal ions. These findings suggest that AoMan134A could be useful in a diverse range of industries where conversion of β-mannans is of prime importance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aspinall GO (1959) Structural chemistry of the hemicelluloses. Adv Carbohydr Chem 14:429–468

    CAS  PubMed  Google Scholar 

  2. Barak S, Mudgil D (2014) Locust bean gum: processing, properties and food applications: a review. Int J Biol Macromol 66:74–80

    CAS  Article  PubMed  Google Scholar 

  3. Bien-Cuong D, Thi-Thu D, Berrin JG, Haltrich D, Kim-Anh T, Sigoillot JC, Yamabhai M (2009) Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01. Microb Cell Factories 8:59

    Article  Google Scholar 

  4. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  5. Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications: a review. Appl Microbiol Biotechnol 93:1817–1830

    CAS  Article  PubMed  Google Scholar 

  6. Chauhan PS, Sharma P, Puri N, Gupta N (2014) Purification and characterization of an alkali-thermostable β-mannanase from Bacillus nealsonii PN-11 and its application in mannooligosaccharides preparation having prebiotic potential. Eur Food Res Technol 238:927–936

    CAS  Article  Google Scholar 

  7. Chiyanzu I, Brienzo M, García-Aparicio MP, Görgens JF (2014) Application of endo-β-1,4-D-mannanase and cellulase for the release of mannooligosaccharides from steam-pretreated spent coffee ground. Appl Biochem Biotechnol 172:3538–3557

    CAS  Article  PubMed  Google Scholar 

  8. Comfort DA, Chhabra SR, Conners SB, Chou CJ, Epting KL, Johnson MR, Jones KL, Sehgal AC, Kelly RM (2004) Strategic biocatalysis with hyperthermophilic enzymes. Green Chem 6:459–465

    CAS  Article  Google Scholar 

  9. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications: a review. Crit Rev Biotechnol 27:197–216

    CAS  Article  PubMed  Google Scholar 

  11. Duffaud GD, McCutchen CM, Leduc P, Parker KL, Kelly RM (1997) Purification and characterization of extremely thermostable β-mannanase, β-mannosidase, and α-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl Environ Microbiol 63:169–177

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Duruksu G, Ozturk B, Biely P, Bakir U, Ogel ZB (2009) Cloning, expression and characterization of endo-β-1,4-mannanase from Aspergillus fumigatus in Aspergillus sojae and Pichia pastoris. Biotechnol Prog 25:271–276

    CAS  Article  PubMed  Google Scholar 

  13. Gilbert HJ, Stålbrand H, Brumer H (2008) How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 11:338–348

    CAS  Article  PubMed  Google Scholar 

  14. Grütter MG, Hawkes RB, Matthews BW (1979) Molecular basis of thermostability in the lysozyme from bacteriophage T4. Nature 277:667–669

    Article  PubMed  Google Scholar 

  15. He X, Liua N, Li W, Zhang Z, Zhanga B, Ma Y (2008) Inducible and constitutive expression of a novel thermostable alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzym Microb Technol 43:13–18

    CAS  Article  Google Scholar 

  16. Heck JX, Soares LHB, Ayub MAZ (2005) Optimization of xylanase and mannanase production by Bacillus circulans strain BL53 on solid-state cultivation. Enzym Microb Technol 37:417–423

    CAS  Article  Google Scholar 

  17. Hsiao YM, Liu YF, Fang MC, Tseng YH (2012) Transcriptional regulation and molecular characterization of the manA gene encoding the biofilm dispersing enzyme mannan endo-1,4-β-mannosidase in Xanthomonas campestris. J Agric Food Chem 58:1653–1663

    Article  Google Scholar 

  18. Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela L, Souza D, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, Davies GJ (2016) A β-mannanase with a lysozyme-like fold and a novel molecular catalytic mechanism. ACS Cent Sci. doi:10.1021/acscentsci.6b00232

    PubMed  PubMed Central  Google Scholar 

  19. Johnvesly B, Manjunath BR, Naik GR (2002) Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Bioresour Technol 82:61–64

    CAS  Article  PubMed  Google Scholar 

  20. Katrolia P, Yan Q, Zhang P, Zhou P, Yang S, Jiang Z (2013) Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-β-mannanase from Rhizomucor miehei. J Agric Food Chem 61:394–401

    CAS  Article  PubMed  Google Scholar 

  21. Katrolia P, Zhou P, Zhang P, Yan Q, Li Y, Jiang Z, Xu H (2012) High level expression of a novel β-mannanase from Chaetomium sp. exhibiting efficient mannan hydrolysis. Carbohydr Polym 87:480–490

    CAS  Article  Google Scholar 

  22. Liao H, Li S, Zheng H, Wei Z, Liu D, Raza W, Shen Q, Xu Y (2014) A new acidophilic thermostable endo-1,4-β-mannanase from Penicillium oxalicum GZ-2: cloning, characterization and functional expression in Pichia pastoris. BMC Biotechnol 14:90

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lu H, Luo H, Shi P, Huang H, Meng K, Yang P, Yao B (2014) A novel thermophilic endo-β-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Appl Microbiol Biotechnol 98:2155–2163

    CAS  Article  PubMed  Google Scholar 

  24. Lu H, Zhang H, Shi P, Luo H, Wang Y, Yang P, Yao B (2013) A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl Microbiol Biotechnol 97:121–128

    Google Scholar 

  25. Luo H, Wang K, Huang H, Shi P, Yang P, Yao B (2012) Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from Humicola insolens Y1. J Ind Microbiol Biotechnol 39:547–555

    CAS  Article  PubMed  Google Scholar 

  26. Maijala P, Kango N, Szijarto N, Viikari L (2012) Characterization of hemicellulases from thermophilic fungi. Antonie Van Leeuwenhoek 101:905–917

    CAS  Article  PubMed  Google Scholar 

  27. Martínez-Caballero S, Cano-Sánchez P, Mares-Mejía I, Díaz-Sánchez AG, Macías-Rubalcava ML, Hermoso JA, Rodríguez-Romero A (2014) Comparative study of two GH19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain. FEBS J 281:4535–4554

    Article  PubMed  Google Scholar 

  28. Mikkelson A, Maaheimo H, Hakala TK (2013) Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydr Res 372:60–68

    CAS  Article  PubMed  Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Article  Google Scholar 

  30. Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems: a review. Appl Microbiol Biotechnol 79:165–178

    CAS  Article  PubMed  Google Scholar 

  31. Nunes FM, Reis A, Domingues MR, Coimbra MA (2006) Characterization of galactomannan derivatives in roasted coffee beverages. J Agric Food Chem 54:3428–3439

    CAS  Article  PubMed  Google Scholar 

  32. Pawar PM, Koutaniemi S, Tenkanen M, Mellerowicz EJ (2013) Acetylation of woody lignocellulose: significance and regulation. Front Plant Sci 4:118

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pérez RM, Carlucci MJ, Noseda MD, Matulewicz MC (2012) Chemical modifications of algal mannans and xylomannans: effects on antiviral activity. Phytochemistry 73:57–64

    Article  Google Scholar 

  34. Puls J, Schuseil J (1993) In: Coughlan MP, Hazlewood GP (ed) Chemistry of hemicellulose: relationship between hemicellulose structure and enzyme required for hydrolysis. In Hemicellulose and Hemicellulases, London, Portland Press, pp 1–27

  35. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    CAS  Article  PubMed  Google Scholar 

  36. Schröder R, Atkinson RG, Redgwell RJ (2009) Re-interpreting the role of endo-β-mannanases as mannan endo transglycosylase/hydrolases in the plant cell wall. Ann Bot 104:197–204

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    CAS  Article  PubMed  Google Scholar 

  38. Shih P, Holland DR, Kirsch JF (1995) Thermal stability determinants of chicken egg-white lysozyme core mutants: hydrophobicity, packing volume, and conserved buried water molecules. Protein Sci 4:2050–2062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Shimizu M, Fujii T, Masuo S, Takaya N (2010) Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl Environ Microbiol 76:1507–1515

  40. Shimizu M, Kaneko Y, Ishihara S, Mochizuki M, Sakai K, Yamada M, Murata S, Itoh E, Yamamoto T, Sugiyama Y, Hirano T, Takaya N, Kobayashi T, Kato M (2015) Novel β-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J Biol Chem 290:27914–27927

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shimizu M, Masuo S, Fujita T, Doi Y, Kamimura Y, Takaya N (2012) Hydrolase controls cellular NAD, sirtuin, and secondary metabolites. Mol Cell Biol 32:3743–3755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Shimizu M, Masuo S, Itoh E, Zhou S, Kato M, Takaya N (2016) Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans. Biosci Biotechnol Biochem 11:1–8

    Google Scholar 

  43. Simkovic I (2013) Unexplored possibilities of all polysaccharide composites. Carbohydr Polm 95:697–715

    CAS  Article  Google Scholar 

  44. Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies: a review. Bioresour Technol 101:1570–1580

    CAS  Article  PubMed  Google Scholar 

  45. Spencer DB, Chen CP, Hulett FM (1981) Effect of cobalt on synthesis and activation of Bacillus licheniformis alkaline phosphatase. J Bacteriol 145:926–933

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stålbrand H, Siika-aho M, Tenkanen M, Viikari L (1993) Purification and characterization of two β-mannanases from Trichoderma reesei. J Biotechnol 29:229–242

    Article  Google Scholar 

  47. Teleman A, Nordström M, Tenkanen M, Jacobs A, Dahlman O (2003) Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr Res 338:525–534

    CAS  Article  PubMed  Google Scholar 

  48. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Tech 1:45–70

    CAS  Article  Google Scholar 

  49. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:9

    Article  Google Scholar 

  50. Viikari L, Alapuranen M, Puranen T, Vehmaanper J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145

    CAS  PubMed  Google Scholar 

  51. von Freiesleben P, Spodsberg N, Blicher TH, Anderson L, Jørgensen H, Stålbrand H, Meyer AS, Krogh KB (2016) An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans. Enzym Microb Technol 83:68–77

    Article  Google Scholar 

  52. Wang C, Luo H, Niu C, Shi P, Huang H, Meng K, Bai Y, Wang K, Hua H, Yao B (2015) Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Appl Microbiol Biotechnol 99:1217–1228

    CAS  Article  PubMed  Google Scholar 

  53. Wang C, Zhang J, Wang Y, Niu C, Ma R, Wang Y, Bai Y, Luo H, Yao B (2016) Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability. Food Chem 197:474–481

    CAS  Article  PubMed  Google Scholar 

  54. Yamabhai M, Ubol SS, Srila W, Haltrich D (2014) Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol 36:32–42

    Article  Google Scholar 

  55. Yoon KH, Chung S, Lim BL (2008) Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. Microbiology 46:344–349

    CAS  Google Scholar 

  56. Zhao W, Zheng J, Zhou H (2011a) A thermotolerant and cold-active mannan endo-1,4-β-mannosidase from Aspergillus niger CBS513.88: constitutive overexpression and high-density fermentation in Pichia pastoris. Bioresour Technol 102:7538–7547

    CAS  Article  PubMed  Google Scholar 

  57. Zhao Y, Zhang Y, Cao Y, Qi J, Mao L, Xue Y, Gao F, Peng H, Wang X, Gao GF, Ma Y (2011b) Structural analysis of alkaline β-mannanase from Alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. PLoS One 6:e14608–e14619

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Norma Foster for critical reading of the manuscript. This study was supported by a Grant-in-Aid for Scientific Research (20423535 to MS, 25450116 to MK). This study was also partially supported by the Institute for Fermentation, Osaka (IFO), Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Motoyuki Shimizu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

This article does not contain any studies with humans or other animals performed by any of the authors.

Electronic supplementary material

Fig. S1

(PDF 151 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakai, K., Mochizuki, M., Yamada, M. et al. Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae . Appl Microbiol Biotechnol 101, 3237–3245 (2017). https://doi.org/10.1007/s00253-017-8107-x

Download citation

Keywords

  • Glycoside hydrolase 134
  • Mannanolytic enzyme
  • Hemicellulose
  • Plant biomass
  • Industrial application