Applied Microbiology and Biotechnology

, Volume 101, Issue 7, pp 2893–2903 | Cite as

Xyloglucan breakdown by endo-xyloglucanase family 74 from Aspergillus fumigatus

  • André Ricardo de Lima Damasio
  • Marcelo Ventura Rubio
  • Thiago Augusto Gonçalves
  • Gabriela Felix Persinoti
  • Fernando Segato
  • Rolf Alexander Prade
  • Fabiano Jares Contesini
  • Amanda Pereira de Souza
  • Marcos Silveira Buckeridge
  • Fabio Marcio SquinaEmail author
Biotechnologically relevant enzymes and proteins


Xyloglucan is the most abundant hemicellulose in primary walls of spermatophytes except for grasses. Xyloglucan-degrading enzymes are important in lignocellulosic biomass hydrolysis because they remove xyloglucan, which is abundant in monocot-derived biomass. Fungal genomes encode numerous xyloglucanase genes, belonging to at least six glycoside hydrolase (GH) families. GH74 endo-xyloglucanases cleave xyloglucan backbones with unsubstituted glucose at the −1 subsite or prefer xylosyl-substituted residues in the −1 subsite. In this work, 137 GH74-related genes were detected by examining 293 Eurotiomycete genomes and Ascomycete fungi contained one or no GH74 xyloglucanase gene per genome. Another interesting feature is that the triad of tryptophan residues along the catalytic cleft was found to be widely conserved among Ascomycetes. The GH74 from Aspergillus fumigatus (AfXEG74) was chosen as an example to conduct comprehensive biochemical studies to determine the catalytic mechanism. AfXEG74 has no CBM and cleaves the xyloglucan backbone between the unsubstituted glucose and xylose-substituted glucose at specific positions, along the XX motif when linked to regions deprived of galactosyl branches. It resembles an endo-processive activity, which after initial random hydrolysis releases xyloglucan-oligosaccharides as major reaction products. This work provides insights on phylogenetic diversity and catalytic mechanism of GH74 xyloglucanases from Ascomycete fungi.


Fungal glucanases Xyloglucanases Xyloglucan specific Aspergillus Endo-processive 



We are grateful to the State of São Paulo Research Foundation (FAPESP) for its financial support (2012/20549-4 to ARLD; 2008/58037-9 to FMS; 2014/18714-2 to FS). ARLD also received a FAPESP fellowship (2011/02169-7). This work was also financially supported by CNPq: 442333/2014-5, 310186/2014-5, 304445/2014-2, and 441912/2014-1. APS and MSB thank the Instituto Nacional de Ciência e Tecnologia do Bioetanol – INCT do Bioetanol (FAPESP 2008/57908-6 and CNPq 574002/2008-1). We would like to thank the entire team of the molecular biology laboratory from CTBE/CNPEM.

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2016_8014_MOESM1_ESM.pdf (407 kb)
ESM 1 (PDF 406 kb)


  1. Barratt RW, Johnson GB, Ogata WN (1965) Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52:233–246PubMedPubMedCentralGoogle Scholar
  2. Bauer S, Vasu P, Mort AJ, Somerville CR (2005) Cloning, expression, and characterization of an oligoxyloglucan reducing end-specific xyloglucanobiohydrolase from Aspergillus nidulans. Carbohydr Res 340:2590–2597CrossRefPubMedGoogle Scholar
  3. Benoit I, Culleton H, Zhou M, DiFalco M, Aguilar-Osorio G, Battaglia E, Bouzid O, Brouwer CPJM, El-Bushari HBO, Coutinho PM, Gruben BS, Hildén KS, Houbraken J, Barboza LAJ, Levasseur A, Majoor E, Mäkelä MR, Narang H-M, Trejo-Aguilar B, van den Brink J, vanKuyk PA, Wiebenga A, McKie V, McCleary B, Tsang A, Henrissat B, de Vries RP (2015) Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol Biofuels 8:107–120CrossRefPubMedPubMedCentralGoogle Scholar
  4. Betini JH, Michelin M, Peixoto-Nogueira SC, Jorge JA, Terenzi HF, Polizeli ML (2009) Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst Eng 32:819–824CrossRefPubMedGoogle Scholar
  5. Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Paes Leme AF, Squina FM, Buckeridge M, Goldman GH, Oliveira JV (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One 10:e0129275. doi: 10.1371/journal.pone.0129275 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol 154:1017–1023CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buckeridge MS, de Souza AP (2014) Breaking the “glycomic code” of cell wall polysaccharides may improve second-generation bioenergy production from biomass. BioEnergy Res 7:1065–1073CrossRefGoogle Scholar
  9. Cota J, Alvarez TM, Citadini AP, Santos CR, de Oliveira NM, Oliveira RR, Pastore GM, Ruller R, Prade RA, Murakami MT, Squina FM (2011) Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga petrophila. Biochem Biophys Res Commun 406:590–594CrossRefPubMedGoogle Scholar
  10. de Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenerg Res 6:564–579CrossRefGoogle Scholar
  11. de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MH, de Vries RP, de Castro Oliveira JV, Goldman GH (2011) Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels 4:40–55CrossRefPubMedPubMedCentralGoogle Scholar
  12. Damásio ARL, Silva TM, Almeida FBDR, Squina FM, Ribeiro DA, Leme AFP, Segato F, Prade RA, Jorge JA, Terenzi HF, Polizeli MDLTM (2011) Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem 46:1236–1242CrossRefGoogle Scholar
  13. Damásio ARL, Braga CMP, Brenelli LB, Citadini AP, Mandelli F, Cota J, Almeida RF, Salvador VH, Paixao DAA, Segato MAZ, Oliveira Neto M, Santos WD, Squina FM (2014a) Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Appl Microbiol Biotechnol 97:6759–6767CrossRefGoogle Scholar
  14. Damásio ARL, Rubio MV, Oliveira LC, Segato F, Dias BA, Citadini AP, Paixão DA, Squina FM (2014b) Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12. Biotechnol Bioeng 111:1494–1505CrossRefPubMedGoogle Scholar
  15. Fanutti C, Gidley MJ, Reid JS (1993) Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1-4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J 3:691–700CrossRefPubMedGoogle Scholar
  16. Feng T, Yan KP, Mikkelsen MD, Meyer AS, Schols HA, Westereng B, Mikkelsen JD (2014) Characterisation of a novel endo-xyloglucanase (XcXGHA) from Xanthomonas that accommodates a xylosyl-substituted glucose at subsite −1. Appl Microbiol Biotechnol 98:9667–9679CrossRefPubMedGoogle Scholar
  17. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37CrossRefGoogle Scholar
  18. Fry SC, York WS, Albersheim P, Darvill AG, Hayashi T, Joseleau J, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89:1–3CrossRefGoogle Scholar
  19. Gloster TM, Ibatullin FM, Macauley K, Eklof JM, Roberts S, Turkenburg JP, Bjornvad ME, Jorgensen PL, Danielsen S, Johansen KS, Borchert TV, Wilson KS, Brumer H, Davies GJ (2007) Characterization and three-dimensional structures of two distinct bacterial xyloglucanases from families GH5 and GH12. J Biol Chem 282:19177–19189CrossRefPubMedGoogle Scholar
  20. Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281Google Scholar
  21. Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256:119–127CrossRefPubMedGoogle Scholar
  22. Hasper AA, Dekkers E, van Mil M, van de Vondervoort PJI, de Graaff LH (2002) EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68:1556–1560CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168CrossRefGoogle Scholar
  24. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45–56CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ichinose H, Araki Y, Michikawa M, Harazono K, Yaoi K, Karita S, Kaneko S (2012) Characterization of an endo-processive-type xyloglucanase having a β-1,4-glucan-binding module and an endo-type xyloglucanase from Streptomyces avermitilis. Appl Environ Microbiol 78:7939–7945CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ishida T, Yaoi K, Hiyoshi A, Igarashi K, Samejima M (2007) Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium. FEBS J 274:5727–5736CrossRefPubMedGoogle Scholar
  27. Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS (2008) Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 1:10–21CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koivula A, Kinnari T, Harjunpaa V, Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri TT (1998) Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett 429:341–346CrossRefPubMedGoogle Scholar
  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRefPubMedGoogle Scholar
  30. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41–54CrossRefPubMedPubMedCentralGoogle Scholar
  31. Martinez-Fleites C, Guerreiro CIPD, Baumann MJ, Taylor EJ, Prates JAM, Ferreira LMA, Fontes CMGA, Brumer H, Davies GJ (2006) Crystal structures of Clostridium thermocellum xyloglucanase, XGH74A, reveal the structural basis for xyloglucan recognition and degradation. J Biol Chem 281:24922–24933CrossRefPubMedGoogle Scholar
  32. Matsuzawa T, Saito Y, Yaoi K (2014) Key amino acid residues for the endo-processive activity of GH74 xyloglucanase. FEBS Lett 588:1731–1738CrossRefPubMedGoogle Scholar
  33. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49(1):183–186Google Scholar
  34. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  35. Naran R, Pierce ML, Mort AJ (2007) Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons. Plant J 50:95–107CrossRefPubMedGoogle Scholar
  36. Ravachol J, Borne R, Tardif C, de Philip P, Fierobe H-P (2014) Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem 289:7335–7348CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ray A, Saykhedkar S, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ (2012) Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum. Appl Microbiol Biotechnol 93:2075–2089CrossRefPubMedGoogle Scholar
  38. Ribeiro DA, Cota J, Alvarez TM, Bruchli F, Bragato J, Pereira BM, Pauletti BA, Jackson G, Pimenta MT, Murakami MT, Camassola M, Ruller R, Dillon AJ, Pradella JG, Paes Leme AF, Squina FM (2012) The Penicillium echinulatum secretome on sugar cane bagasse. PLoS One 7:e50571. doi: 10.1371/journal.pone.0050571 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade RA, Mort AJ (2012) A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5:52–68CrossRefPubMedPubMedCentralGoogle Scholar
  40. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefPubMedGoogle Scholar
  41. Schneider WDH, Gonçalves TA, Uchima CA, Couger MB, Prade R, Squina FM, Dillon AJP, Camassola M (2016) Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnol Biofuels 9:66CrossRefPubMedPubMedCentralGoogle Scholar
  42. Segato F, de Damasio ARL, de Lucas RC, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by Aspergilli. Microbiol Mol Biol Rev 78(4):588–613CrossRefPubMedPubMedCentralGoogle Scholar
  43. Segato F, Damasio AR, Goncalves TA, de Lucas RC, Squina FM, Decker SR, Prade RA (2012a) High-yield secretion of multiple client proteins in Aspergillus. Enzym Microb Technol 51:100–106CrossRefGoogle Scholar
  44. Segato F, Damasio AR, Goncalves TA, Murakami MT, Squina FM, Polizeli ML, Mort A, Prade RA (2012b) Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. Biotechnol Biofuels 5:21CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shapiro AL, Vinuela E, Maizel JV Jr (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28:815–820CrossRefPubMedGoogle Scholar
  46. Souza A, Leite DC, Pattathil S, Hahn M, Buckeridge M (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579CrossRefGoogle Scholar
  47. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  48. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT-BG, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through simple cell technology. EMBO J 32:1478–1488CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tiné MAS, Lima DU, Buckeridge MS (2003) Galactose branching modulates the action of cellulase on seed storage xyloglucans. Carbohyd Polym 52(2):135–141Google Scholar
  50. Tuomivaara ST, Yaoi K, O’Neill MA, York WS (2014) Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr Res 402:56–66CrossRefPubMedGoogle Scholar
  51. Uchiyama T, Katouno F, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T (2001) Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J Biol Chem 276:41343–41349CrossRefPubMedGoogle Scholar
  52. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307CrossRefPubMedGoogle Scholar
  53. Yaoi K, Kondo H, Noro N, Suzuki M, Tsuda S, Mitsuishi Y (2004) Tandem repeat of a seven-bladed β-propeller domain in oligoxyloglucan reducing-end-specific cellobiohydrolase. Structure 12(7):1209–1217CrossRefPubMedGoogle Scholar
  54. Yaoi K, Kondo H, Hiyoshi A, Noro N, Sugimoto H, Tsuda S, Mitsuishi Y, Miyazaki K (2007) The structural basis for the exo-mode of action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J Mol Biol 370:53–62CrossRefPubMedGoogle Scholar
  55. Yaoi K, Kondo H, Hiyoshi A, Noro N, Sugimoto H, Tsuda S, Miyazaki K (2009) The crystal structure of a xyloglucan-specific endo-β-1,4-glucanase from Geotrichum sp. M128 xyloglucanase reveals a key amino acid residue for substrate specificity. FEBS J 276:5094–5100CrossRefPubMedGoogle Scholar
  56. Yaoi K, Mitsuishi Y (2004) Purification, characterization, cDNA cloning, and expression of a xyloglucan endoglucanase from Geotrichum sp. M128. FEBS Lett 560:45–50CrossRefPubMedGoogle Scholar
  57. Yaoi K, Nakai T, Kameda Y, Hiyoshi A, Mitsuishi Y (2005) Cloning and characterization of two xyloglucanases from Paenibacillus sp. strain KM21. Appl Environ Microbiol 71:7670–7678CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:445–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • André Ricardo de Lima Damasio
    • 1
    • 2
  • Marcelo Ventura Rubio
    • 1
    • 2
  • Thiago Augusto Gonçalves
    • 1
    • 2
  • Gabriela Felix Persinoti
    • 1
  • Fernando Segato
    • 1
    • 3
  • Rolf Alexander Prade
    • 4
  • Fabiano Jares Contesini
    • 1
  • Amanda Pereira de Souza
    • 5
  • Marcos Silveira Buckeridge
    • 5
  • Fabio Marcio Squina
    • 1
    Email author
  1. 1.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil
  2. 2.Department of Biochemistry and Tissue Biology, Institute of BiologyState University of CampinasCampinasBrazil
  3. 3.Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL)Universidade de São Paulo (USP)LorenaBrazil
  4. 4.Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterUSA
  5. 5.Laboratório de Fisiologia e Ecologia de Plantas (LAFIECO), Departamento de Botânica, Instituto de BiociênciasUniversidade de São Paulo (USP)São PauloBrazil

Personalised recommendations