Skip to main content

Maize growth responses to soil microbes and soil properties after fertilization with different green manures

Abstract

The use of green manures in agriculture can provide nutrients, affect soil microbial communities, and be a more sustainable management practice. The activities of soil microbes can effect crop growth, but the extent of this effect on yield remains unclear. We investigated soil bacterial communities and soil properties under four different green manure fertilization regimes (Vicia villosa, common vetch, milk vetch, and radish) and determined the effects of these regimes on maize growth. Milk vetch showed the greatest potential for improving crop productivity and increased maize yield by 31.3 %. This change might be related to changes in soil microbes and soil properties. The entire soil bacterial community and physicochemical properties differed significantly among treatments, and there were significant correlations between soil bacteria, soil properties, and maize yield. In particular, abundance of the phyla Acidobacteria and Verrucomicrobia was positively correlated with maize yield, while Proteobacteria and Chloroflexi were negatively correlated with yield. These data suggest that the variation of maize yield was related to differences in soil bacteria. The results also indicate that soil pH, alkali solution nitrogen, and available potassium were the key environmental factors shaping soil bacterial communities and determining maize yields. Both soil properties and soil microbes might be useful as indicators of soil quality and potential crop yield.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Bioche 80:70–78. doi:10.1016/j.soilbio.2014.09.028

    CAS  Article  Google Scholar 

  2. Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48(5):542–547. doi:10.1111/j.1472-765X.2009.02565.x

    CAS  Article  PubMed  Google Scholar 

  3. Aulakh MS (1994) Integrated nitrogen management and leaching of nitrates to groundwater under cropping systems followed in tropical soils of India. In: Transactions, 15th World Congress of International Society of Soil Science, Mexico. Soil Sci (pp. 205–221)

  4. Aulakh MS, Pasricha NS (1998) The effect of green manuring and fertilizer N application on enhancing crop productivity in mustard—rice rotation in semi-arid subtropical regions. Eur J Agron 8(1):51–58. doi:10.1016/S1161-0301(97)00048-8

    Article  Google Scholar 

  5. Bainard LD, Klironomos JN (2013) Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363(1–2):345–356. doi:10.1007/s11104-012-1321-5

    CAS  Article  Google Scholar 

  6. Burgos NR, Talbert RE (1996) Weed control and sweet corn (Zea mays var. rugosa) response in a no-till system with cover crops. Weed Science: 355–361

  7. Caporaso JG, Lauber CL, Walters WA, Berglyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J Multidiscip J Microbial Ecol 6(8):1621–1624. doi:10.1038/ismej.2012.8

    CAS  Google Scholar 

  8. Caswell E, DeFrank J, Apt W, Tang C (1991) Influence of nonhost plants on population decline of Rotylenchulus reniformis. J Nematol 23(1):91

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cerrato M, Blackmer A (1990) Comparison of models for describing; corn yield response to nitrogen fertilizer. Agrono J 82(1):138–143. doi:10.2134/agronj1990.00021962008200010030x

    Article  Google Scholar 

  10. Chang EH, Chung RS, Tsai YH (2007) Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci Plant Nutr 53(2):132–140. doi:10.1111/j.1747-0765.2007.00122.x

    CAS  Article  Google Scholar 

  11. Chen CP, Cheng CH, Huang YH, Chen CT, Lai CM, Menyailo OV, Fan LJ, Yang YW (2014) Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma 232:581–588. doi:10.1016/j.geoderma.2014.06.021

    Article  Google Scholar 

  12. Cherr C, Scholberg J, McSorley R (2006) Green manure approaches to crop production. Agrono J 98(2):302–319. doi:10.2134/agronj2005.0035

    Article  Google Scholar 

  13. Cline GR, Silvernail AF (2002) Effects of cover crops, nitrogen, and tillage on sweet corn. HortTechnology 12(1):118–125

    Google Scholar 

  14. Coolon JD, Jones KL, Todd TC, Blair JM, Herman MA (2013) Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie. PLoS One 8(6):65–65. doi:10.1371/journal.pone.0067884

    Article  Google Scholar 

  15. Dapaah H, Vyn T (1998) Nitrogen fertilization and cover crop effects on soil structural stability and corn performance. Commun Soil Sci Plan 29(17–18):2557–2569. doi:10.1080/00103629809370134

    CAS  Article  Google Scholar 

  16. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461

    CAS  Article  PubMed  Google Scholar 

  17. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. P Acad Sci 112(8):E911–E920. doi:10.1073/pnas.1414592112

    CAS  Article  Google Scholar 

  18. Esperschütz J, Gattinger A, Mäder P, Schloter M, Fließbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61(1):26–37. doi:10.1111/j.1574-694.2007.00318.x

    Article  PubMed  Google Scholar 

  19. Fang SM, Tang LN, Chen SH, Gu G, Chen YS (2011) Influence of crop rotation on tobacco bacterial wilt number and pothogenesy. Chin J Eco-Agric 19(2):377–382. doi:10.3724/sp.j.1011.2011.00377

    Article  Google Scholar 

  20. Garbeva P, Van Veen J, Van Elsas J (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi:10.1146/annurev.phyto.42.012604.135455

    CAS  Article  PubMed  Google Scholar 

  21. García-Fraile P, Benada O, Cajthaml T, Baldrian P, Lladó S (2016) Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl Environ Microbiol 82(2):560–569. doi:10.1128/AEM.03353-15

    Article  PubMed Central  Google Scholar 

  22. Gaston L, Boquet D, Bosch M (2003) Fluometuron sorption and degradation in cores of silt loam soil from different tillage and cover crop systems. Soil Sci Soc Am J 67(3):747–755. doi:10.2136/sssaj2003.7470

    CAS  Article  Google Scholar 

  23. Hartmann A, Schmid M, Dv T, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321(1–2):235–257. doi:10.1007/s11104-008-9814-y

    Google Scholar 

  24. Haynes R, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosys 51(2):123–137. doi:10.1023/A:1009738307837

    Article  Google Scholar 

  25. Hol W, De Boer W, Termorshuizen AJ, Meyer KM, Schneider JH, Van Dam NM, Van Veen JA, Van Der Putten WH (2010) Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett 13(3):292–301. doi:10.1111/j.1461-0248.2009.01424.x

    Article  PubMed  Google Scholar 

  26. Horvath S, Zhang B, Carlson M, Lu KV, Zhu RM, Felciano LMF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Natl Acad Sci USA 103:17402–17407. doi:10.1073/pnas.0608396103

    CAS  Article  Google Scholar 

  27. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Adv Sci Lett 40(11):2843–2853. doi:10.1016/j.soilbio.2008.07.030

    CAS  Google Scholar 

  28. Jiménez DJ, Andreote FD, Chaves D, Montaña JS, Osorio-Forero C, Junca H, Zambrano MM, Baena S (2012) Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes [J]. PLoS One 7(12):e52069. doi:10.1371/journal.pone.0052069

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3(4):442–453. doi:10.1038/ismej.2008.127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, van der Waarde J, Krooneman J, Rossetti S, Thomsen TR, Nielsen PH (2007) Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol 59(3):671–682. doi:10.1111/j.1574-6941.2006.00251.x

    CAS  Article  PubMed  Google Scholar 

  31. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11(9):980–992(13). doi:10.1111/j.1461-0248.2008.01209.x

    Article  PubMed  Google Scholar 

  32. Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192(1):215–224. doi:10.1111/j.1469-8137.2011.03790.x

    Article  PubMed  Google Scholar 

  33. Li B, Zhou D, Cang L, Zhang H, Fan X, Qin S (2007) Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Till Res 96(1):166–173. doi:10.1016/j.still.2007.05.005

    Article  Google Scholar 

  34. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697. doi:10.1126/science.1071148

    Article  PubMed  Google Scholar 

  35. Marschner H, Rimmington G (1988) Mineral nutrition of higher plants. Plant Cell Environ 11:147–148. doi:10.1111/j.1365-3040.1988.tb01130

    Google Scholar 

  36. Mitchell G, Mitchell J (1981) Principles and procedures of statistics: a biometrical approach: by Robert GD Steel and James H. Torrie; McGraw-Hill Book Co., New York, 1980. 633+ xxi pp.(£ 15.60). Elsevier

  37. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. P Nat Acad Sci USA 110(16):6548–6553. doi:10.1073/pnas.1302837110

    CAS  Article  Google Scholar 

  38. Ramsey MH, Thompson M (1987) High-accuracy analysis by inductively coupled plasma atomic emission spectrometry using the parameter-related internal standard method. J Anal Atom Spectro 2(5):497–502. doi:10.1039/JA9870200497

    CAS  Article  Google Scholar 

  39. Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168(2):305–312. doi:10.1111/j.1469-8137.2005.01558.x

    CAS  Article  PubMed  Google Scholar 

  40. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339. doi:10.1007/s11104-009-9895-2

    CAS  Article  Google Scholar 

  41. Robertson G, Groffman P (2007) Nitrogen transformations. Soil microbiology, ecology, and biochemistry 3:341–364

    Article  Google Scholar 

  42. Sabree ZL, Bergendahl V, Liles MR, Burgess RR, Goodman RM, Handelsman J (2006) Identification and characterization of the gene encoding the Acidobacterium capsulatum major sigma factor. Gene 376(1):144–151. doi:10.1016/j.gene.2006.02.033

    CAS  Article  PubMed  Google Scholar 

  43. Shen W, Lin X, Gao N, Zhang H, Yin R, Shi W, Duan Z (2008) Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta. Plant Soil 306(1–2):117–127. doi:10.1007/s11104-007-9472-5

    CAS  Article  Google Scholar 

  44. Sikora L, Enkiri N (1999) Growth of tall fescue in compost/fertilizer blends. Soil Sci 164(1):62–69

    CAS  Article  Google Scholar 

  45. Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. ISBN 3–900051–07-0

  46. van Diepeningen AD, de Vos OJ, Korthals GW, van Bruggen AH (2006) Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl Soil Ecol 31(1):120–135. doi:10.1016/j.apsoil.2005.03.003

    Article  Google Scholar 

  47. Veen JAV, Kuikman PJ (1990) Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry 11(3):213–233. doi:10.1007/BF00004497

    Article  Google Scholar 

  48. Verbruggen E, Kiers ET, Bakelaar PNC, Röling WFM, van der Heijden MGA (2012) Provision of contrasting ecosystem services by soil communities from different agricultural fields. Plant Soil 350(1–2):43–55. doi:10.1007/s11 104-011-0828-5

    CAS  Article  Google Scholar 

  49. Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. P Nat Acad Sci 111(14):5266–5270. doi:10.1073/pnas.1320054111

    CAS  Article  Google Scholar 

  50. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi:10.1128/AEM.00062-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75(7):2046–2056. doi:10.1128/AEM.02294-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Webb J, Chadwick D, Ellis S (2004) Emissions of ammonia and nitrous oxide following incorporation into the soil of farmyard manures stored at different densities. Nutr Cycl in Agroecosys 70(1):67–76. doi:10.1023/B:FRES.0000045985.32440.27

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Nature Science Foundation of China (No. 31570113 and No. 41573072). Thanks to Prof. Huaqun Yin and Xueduan Liu who helped us design this study and contributed the materials essential for this study; to Yabing Gu, Liyuan Ma, and Yili Liang for their help in finishing this experiment; to Jiaojiao Niu and Yunhua Xiao for data analysis; and to Delong Meng, Yuguang Zhang, Wenkun Huang, and Deliang Peng for language revision.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huaqun Yin.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 605 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, J., Liu, X., Liang, Y. et al. Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Appl Microbiol Biotechnol 101, 1289–1299 (2017). https://doi.org/10.1007/s00253-016-7938-1

Download citation

Keywords

  • Green manures
  • Bacterial communities
  • Soil physicochemical properties
  • Maize yield