Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 3, pp 1289–1299 | Cite as

Maize growth responses to soil microbes and soil properties after fertilization with different green manures

  • Jiemeng Tao
  • Xueduan Liu
  • Yili Liang
  • Jiaojiao Niu
  • Yunhua Xiao
  • Yabing Gu
  • Liyuan Ma
  • Delong Meng
  • Yuguang Zhang
  • Wenkun Huang
  • Deliang Peng
  • Huaqun Yin
Environmental biotechnology

Abstract

The use of green manures in agriculture can provide nutrients, affect soil microbial communities, and be a more sustainable management practice. The activities of soil microbes can effect crop growth, but the extent of this effect on yield remains unclear. We investigated soil bacterial communities and soil properties under four different green manure fertilization regimes (Vicia villosa, common vetch, milk vetch, and radish) and determined the effects of these regimes on maize growth. Milk vetch showed the greatest potential for improving crop productivity and increased maize yield by 31.3 %. This change might be related to changes in soil microbes and soil properties. The entire soil bacterial community and physicochemical properties differed significantly among treatments, and there were significant correlations between soil bacteria, soil properties, and maize yield. In particular, abundance of the phyla Acidobacteria and Verrucomicrobia was positively correlated with maize yield, while Proteobacteria and Chloroflexi were negatively correlated with yield. These data suggest that the variation of maize yield was related to differences in soil bacteria. The results also indicate that soil pH, alkali solution nitrogen, and available potassium were the key environmental factors shaping soil bacterial communities and determining maize yields. Both soil properties and soil microbes might be useful as indicators of soil quality and potential crop yield.

Keywords

Green manures Bacterial communities Soil physicochemical properties Maize yield 

Notes

Acknowledgments

The study was supported by the National Nature Science Foundation of China (No. 31570113 and No. 41573072). Thanks to Prof. Huaqun Yin and Xueduan Liu who helped us design this study and contributed the materials essential for this study; to Yabing Gu, Liyuan Ma, and Yili Liang for their help in finishing this experiment; to Jiaojiao Niu and Yunhua Xiao for data analysis; and to Delong Meng, Yuguang Zhang, Wenkun Huang, and Deliang Peng for language revision.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

253_2016_7938_MOESM1_ESM.pdf (605 kb)
ESM 1 (PDF 605 kb)

References

  1. Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Bioche 80:70–78. doi: 10.1016/j.soilbio.2014.09.028 CrossRefGoogle Scholar
  2. Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48(5):542–547. doi: 10.1111/j.1472-765X.2009.02565.x CrossRefPubMedGoogle Scholar
  3. Aulakh MS (1994) Integrated nitrogen management and leaching of nitrates to groundwater under cropping systems followed in tropical soils of India. In: Transactions, 15th World Congress of International Society of Soil Science, Mexico. Soil Sci (pp. 205–221)Google Scholar
  4. Aulakh MS, Pasricha NS (1998) The effect of green manuring and fertilizer N application on enhancing crop productivity in mustard—rice rotation in semi-arid subtropical regions. Eur J Agron 8(1):51–58. doi: 10.1016/S1161-0301(97)00048-8 CrossRefGoogle Scholar
  5. Bainard LD, Klironomos JN (2013) Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363(1–2):345–356. doi: 10.1007/s11104-012-1321-5 CrossRefGoogle Scholar
  6. Burgos NR, Talbert RE (1996) Weed control and sweet corn (Zea mays var. rugosa) response in a no-till system with cover crops. Weed Science: 355–361Google Scholar
  7. Caporaso JG, Lauber CL, Walters WA, Berglyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J Multidiscip J Microbial Ecol 6(8):1621–1624. doi: 10.1038/ismej.2012.8 Google Scholar
  8. Caswell E, DeFrank J, Apt W, Tang C (1991) Influence of nonhost plants on population decline of Rotylenchulus reniformis. J Nematol 23(1):91PubMedPubMedCentralGoogle Scholar
  9. Cerrato M, Blackmer A (1990) Comparison of models for describing; corn yield response to nitrogen fertilizer. Agrono J 82(1):138–143. doi: 10.2134/agronj1990.00021962008200010030x CrossRefGoogle Scholar
  10. Chang EH, Chung RS, Tsai YH (2007) Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci Plant Nutr 53(2):132–140. doi: 10.1111/j.1747-0765.2007.00122.x CrossRefGoogle Scholar
  11. Chen CP, Cheng CH, Huang YH, Chen CT, Lai CM, Menyailo OV, Fan LJ, Yang YW (2014) Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma 232:581–588. doi: 10.1016/j.geoderma.2014.06.021 CrossRefGoogle Scholar
  12. Cherr C, Scholberg J, McSorley R (2006) Green manure approaches to crop production. Agrono J 98(2):302–319. doi: 10.2134/agronj2005.0035 CrossRefGoogle Scholar
  13. Cline GR, Silvernail AF (2002) Effects of cover crops, nitrogen, and tillage on sweet corn. HortTechnology 12(1):118–125Google Scholar
  14. Coolon JD, Jones KL, Todd TC, Blair JM, Herman MA (2013) Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie. PLoS One 8(6):65–65. doi: 10.1371/journal.pone.0067884 CrossRefGoogle Scholar
  15. Dapaah H, Vyn T (1998) Nitrogen fertilization and cover crop effects on soil structural stability and corn performance. Commun Soil Sci Plan 29(17–18):2557–2569. doi: 10.1080/00103629809370134 CrossRefGoogle Scholar
  16. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi: 10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  17. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. P Acad Sci 112(8):E911–E920. doi: 10.1073/pnas.1414592112 CrossRefGoogle Scholar
  18. Esperschütz J, Gattinger A, Mäder P, Schloter M, Fließbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61(1):26–37. doi: 10.1111/j.1574-694.2007.00318.x CrossRefPubMedGoogle Scholar
  19. Fang SM, Tang LN, Chen SH, Gu G, Chen YS (2011) Influence of crop rotation on tobacco bacterial wilt number and pothogenesy. Chin J Eco-Agric 19(2):377–382. doi: 10.3724/sp.j.1011.2011.00377 CrossRefGoogle Scholar
  20. Garbeva P, Van Veen J, Van Elsas J (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi: 10.1146/annurev.phyto.42.012604.135455 CrossRefPubMedGoogle Scholar
  21. García-Fraile P, Benada O, Cajthaml T, Baldrian P, Lladó S (2016) Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl Environ Microbiol 82(2):560–569. doi: 10.1128/AEM.03353-15 CrossRefPubMedCentralGoogle Scholar
  22. Gaston L, Boquet D, Bosch M (2003) Fluometuron sorption and degradation in cores of silt loam soil from different tillage and cover crop systems. Soil Sci Soc Am J 67(3):747–755. doi: 10.2136/sssaj2003.7470 CrossRefGoogle Scholar
  23. Hartmann A, Schmid M, Dv T, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321(1–2):235–257. doi: 10.1007/s11104-008-9814-y Google Scholar
  24. Haynes R, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosys 51(2):123–137. doi: 10.1023/A:1009738307837 CrossRefGoogle Scholar
  25. Hol W, De Boer W, Termorshuizen AJ, Meyer KM, Schneider JH, Van Dam NM, Van Veen JA, Van Der Putten WH (2010) Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett 13(3):292–301. doi: 10.1111/j.1461-0248.2009.01424.x CrossRefPubMedGoogle Scholar
  26. Horvath S, Zhang B, Carlson M, Lu KV, Zhu RM, Felciano LMF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Natl Acad Sci USA 103:17402–17407. doi: 10.1073/pnas.0608396103 CrossRefGoogle Scholar
  27. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Adv Sci Lett 40(11):2843–2853. doi: 10.1016/j.soilbio.2008.07.030 Google Scholar
  28. Jiménez DJ, Andreote FD, Chaves D, Montaña JS, Osorio-Forero C, Junca H, Zambrano MM, Baena S (2012) Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes [J]. PLoS One 7(12):e52069. doi: 10.1371/journal.pone.0052069 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3(4):442–453. doi: 10.1038/ismej.2008.127 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, van der Waarde J, Krooneman J, Rossetti S, Thomsen TR, Nielsen PH (2007) Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol 59(3):671–682. doi: 10.1111/j.1574-6941.2006.00251.x CrossRefPubMedGoogle Scholar
  31. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11(9):980–992(13). doi: 10.1111/j.1461-0248.2008.01209.x CrossRefPubMedGoogle Scholar
  32. Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192(1):215–224. doi: 10.1111/j.1469-8137.2011.03790.x CrossRefPubMedGoogle Scholar
  33. Li B, Zhou D, Cang L, Zhang H, Fan X, Qin S (2007) Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Till Res 96(1):166–173. doi: 10.1016/j.still.2007.05.005 CrossRefGoogle Scholar
  34. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697. doi: 10.1126/science.1071148 CrossRefPubMedGoogle Scholar
  35. Marschner H, Rimmington G (1988) Mineral nutrition of higher plants. Plant Cell Environ 11:147–148. doi: 10.1111/j.1365-3040.1988.tb01130 Google Scholar
  36. Mitchell G, Mitchell J (1981) Principles and procedures of statistics: a biometrical approach: by Robert GD Steel and James H. Torrie; McGraw-Hill Book Co., New York, 1980. 633+ xxi pp.(£ 15.60). ElsevierGoogle Scholar
  37. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. P Nat Acad Sci USA 110(16):6548–6553. doi: 10.1073/pnas.1302837110 CrossRefGoogle Scholar
  38. Ramsey MH, Thompson M (1987) High-accuracy analysis by inductively coupled plasma atomic emission spectrometry using the parameter-related internal standard method. J Anal Atom Spectro 2(5):497–502. doi: 10.1039/JA9870200497 CrossRefGoogle Scholar
  39. Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168(2):305–312. doi: 10.1111/j.1469-8137.2005.01558.x CrossRefPubMedGoogle Scholar
  40. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339. doi: 10.1007/s11104-009-9895-2 CrossRefGoogle Scholar
  41. Robertson G, Groffman P (2007) Nitrogen transformations. Soil microbiology, ecology, and biochemistry 3:341–364CrossRefGoogle Scholar
  42. Sabree ZL, Bergendahl V, Liles MR, Burgess RR, Goodman RM, Handelsman J (2006) Identification and characterization of the gene encoding the Acidobacterium capsulatum major sigma factor. Gene 376(1):144–151. doi: 10.1016/j.gene.2006.02.033 CrossRefPubMedGoogle Scholar
  43. Shen W, Lin X, Gao N, Zhang H, Yin R, Shi W, Duan Z (2008) Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta. Plant Soil 306(1–2):117–127. doi: 10.1007/s11104-007-9472-5 CrossRefGoogle Scholar
  44. Sikora L, Enkiri N (1999) Growth of tall fescue in compost/fertilizer blends. Soil Sci 164(1):62–69CrossRefGoogle Scholar
  45. Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. ISBN 3–900051–07-0Google Scholar
  46. van Diepeningen AD, de Vos OJ, Korthals GW, van Bruggen AH (2006) Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl Soil Ecol 31(1):120–135. doi: 10.1016/j.apsoil.2005.03.003 CrossRefGoogle Scholar
  47. Veen JAV, Kuikman PJ (1990) Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry 11(3):213–233. doi: 10.1007/BF00004497 CrossRefGoogle Scholar
  48. Verbruggen E, Kiers ET, Bakelaar PNC, Röling WFM, van der Heijden MGA (2012) Provision of contrasting ecosystem services by soil communities from different agricultural fields. Plant Soil 350(1–2):43–55. doi: 10.1007/s11 104-011-0828-5 CrossRefGoogle Scholar
  49. Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. P Nat Acad Sci 111(14):5266–5270. doi: 10.1073/pnas.1320054111 CrossRefGoogle Scholar
  50. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi: 10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75(7):2046–2056. doi: 10.1128/AEM.02294-08 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Webb J, Chadwick D, Ellis S (2004) Emissions of ammonia and nitrous oxide following incorporation into the soil of farmyard manures stored at different densities. Nutr Cycl in Agroecosys 70(1):67–76. doi: 10.1023/B:FRES.0000045985.32440.27 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jiemeng Tao
    • 1
    • 2
  • Xueduan Liu
    • 1
    • 2
  • Yili Liang
    • 1
    • 2
  • Jiaojiao Niu
    • 1
    • 2
  • Yunhua Xiao
    • 1
    • 2
  • Yabing Gu
    • 1
    • 2
  • Liyuan Ma
    • 1
    • 2
  • Delong Meng
    • 1
    • 2
  • Yuguang Zhang
    • 3
  • Wenkun Huang
    • 4
  • Deliang Peng
    • 4
  • Huaqun Yin
    • 1
    • 2
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Biometallurgy of Ministry of EducationCentral South UniversityChangshaChina
  3. 3.Institute of Forestry Ecology, Environment and Protection, and the Key Laboratory of Forest Ecology and Environment of State Forestry AdministrationChinese Academy of ForestryBeijingChina
  4. 4.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations