Skip to main content
Log in

Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

PMA1 encodes a transmembrane polypeptide that functions to pump protons out of the cell. Ectopic PMA1 overexpression in Saccharomyces cerevisiae enhances tolerance to weak acids, reactive oxygen species (ROS) and ethanol, and changes the following physiological properties: better proton efflux, lower membrane permeability, and lessened internal hydrogen peroxide production. The enhanced stress tolerance was dependent on the mitogen-activated protein kinase (MAPK) Hog1 of the high osmolarity glycerol (HOG) pathway, but not the MAPK Slt2 of the cell wall integrity (CWI) pathway; however, a PMA1 overexpression constitutively activated both Hog1 and Slt2. The constitutive Hog1 activation required the MAPK kinase kinase (MAP3K) Ssk2 of the HOG pathway, but not Ste11 and Ssk22, two other MAP3Ks of the same pathway. The constitutive Slt2 activation did not require Rom2 and the membrane sensors of the CWI pathway, whereas Bck1 was indispensable. The PMA1 overexpression activated the stress response element but not the cyclic AMP response element and the Rlm1 transcription factor. PMA1 overexpression may facilitate the construction of industrial strains with simultaneous tolerance to weak acids, ROS, and ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambesi A, Miranda M, Petrov VV, Slayman CW (2000) Biogenesis and function of the yeast plasma-membrane H+-ATPase. J Exp Biol 203:155–160

    CAS  PubMed  Google Scholar 

  • Auer M, Scarborough GA, Kühlbrandt W (1998) Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392:840–843

    Article  CAS  PubMed  Google Scholar 

  • Bicknell AA, Tourtellotte J, Niwa M (2010) Late phase of the endoplasmic reticulum stress response pathway is regulated by Hog1 MAP kinase. J Biol Chem 285:17545–17555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Feldman DE, Deng C, Brown JA, De Giacomo AF, Gaw AF, Shi G, Le QT, Brown JM, Koong AC (2005) Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Cancer Res 3:669–678

    Article  CAS  PubMed  Google Scholar 

  • Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P (1997) Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • de Nadal E, Posas F (2010) Multilayered control of gene expression by stress-activated protein kinases. EMBO J 29:4–13

    Article  PubMed  Google Scholar 

  • DeWitt ND, dos Santos CF, Allen KE, Slayman CW (1998) Phosphorylation region of the yeast plasma membrane H+-ATPase. Role in protein folding and biogenesis. J Biol Chem 273:21744–21751

    Article  CAS  PubMed  Google Scholar 

  • Eraso P, Cid A, Serrano R (1987) Tight control of the amount of yeast plasma membrane ATPase during changes in growth conditions and gene dosage. FEBS Lett 224:193–197

    Article  CAS  PubMed  Google Scholar 

  • Eraso P, Mazón MJ, Portillo F (2006) Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta 1758:164–170

    Article  CAS  PubMed  Google Scholar 

  • Eraso P, Mazón MJ, Posas F, Portillo F (2011) Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Mol Microbiol 79:1339–1352

    Article  CAS  PubMed  Google Scholar 

  • Estrada E, Agostinis P, Vandenheede JR, Goris J, Merlevede W, François J, Goffeau A, Guralain M (1996) Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem 271:32064–32072

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Arranz M, Maldonado AM, Mazón MJ, Portillo F (1994) Transcriptional control of yeast plasma membrane H+-ATPase by glucose. Cloning and characterization of a new gene involved in this regulation. J Biol Chem 269:18076–18082

    CAS  PubMed  Google Scholar 

  • Harris SL, Na S, Zhu X, Seto-Young D, Perlin DS, Teem JH, Haber JE (1994) Dominant lethal mutations in the plasma membrane H+-ATPase gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 91:10531–10535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan R, Leroy C, Isnard A-D, Labarre J, Boy-Marcotte E, Toledano MB (2002) The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol Microbiol 45:233–241

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Maeda T (2006) Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae. J Biochem 139:797–803

    Article  CAS  PubMed  Google Scholar 

  • Hererro E, Ros J, Bellí G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235

    Article  Google Scholar 

  • Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ (1996) Activity of the plasma membrane H+-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62:3158–3164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacoby T, Flanagan H, Faykin A, Seto AG, Mattison C, Ota I (1997) Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J Biol Chem 272:17749–17755

    Article  CAS  PubMed  Google Scholar 

  • Jung US, Sobering AK, Romeo MJ, Levin DE (2002) Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol Microbiol 46:781–789

    Article  CAS  PubMed  Google Scholar 

  • Kim NR, Yang J, Kwon H, An J, Choi W, Kim W (2013) Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:3227–3228

    Google Scholar 

  • Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Engineering alcohol tolerance in yeast. Science 346:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar containing medium. Biochim Biophys Acta 1780:892–898

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Hamamoto S, Schekman R (2002) Ceramide biosynthesis is required for the formation of the oligomeric H+-ATPase Pma1p in the yeast endoplasmic reticulum. J Biol Chem 277:22395–22401

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Nasution O, Choi E, Choi I, Kim W, Choi W (2015) Transcriptome analysis of acetic acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl Microbiol Biotechnol 99:6391–6403

    Article  CAS  PubMed  Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Tsai AY, Saito H (1993) Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol 13:5408–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  CAS  PubMed  Google Scholar 

  • Mason AB, Allen KE, Slayman CW (2006) Effects of C-terminal truncations on trafficking of the yeast plasma membrane H+-ATPase. J Biol Chem 281:23887–23898

    Article  CAS  PubMed  Google Scholar 

  • Mira NP, Teixeira MC, Sá-Correia I (2010) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14:525–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsomme P, Slayman CW, Goffeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase. Biochim Biophys Acta 1469:133–157

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12:2874–2886

    Article  PubMed  PubMed Central  Google Scholar 

  • Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262:566–569

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Perrone GG, Tan S-X, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783:1354–1368

    Article  CAS  PubMed  Google Scholar 

  • Portillo F (1997) Characterization of dominant lethal mutations in the yeast plasma membrane H+-ATPase gene. FEBS Lett 402:136–140

    Article  CAS  PubMed  Google Scholar 

  • Rao R, Drummond-Barbosa D, Slayman CW (1993) Transcriptional regulation by glucose of the yeast PMA1 gene encoding the plasma membrane H+-ATPase. Yeast 9:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta 947:1–28

    Article  CAS  PubMed  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319:689–693

    Article  CAS  PubMed  Google Scholar 

  • Stratford M, Nebe-von-Caron G, Steels H, Novodvorska M, Ueckert J, Archer DB (2013) Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int J Food Microbiol 161:164–171

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78:8161–8163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H (2006) Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J 25:3033–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teste MA, Duquenne M, François JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Chang A (1999) Eps1, a novel PDI-related protein involved in ER quality control in yeast. EMBO J 18:5972–5982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurgler-Murphy SM, Saito H (1997) Two-component signal transducers and MAPK cascades. Trends Biochem Sci 22:172–176

    Article  CAS  PubMed  Google Scholar 

  • Zheng DQ, Wu XC, Wang PM, Chi XQ, Tao XL, Li P, Jiang XH, Zhao YH (2011) Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38:415–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. H. Saito (Tokyo University, Tokyo, Japan) for the p8xCRE-LacZ plasmid; Dr. D. Levin (Johns Hopkins University, Baltimore, MD, USA) for the p1434 (2X-RLM1); and Dr. C. Slayman (Yale University, New Haven, CT, USA) for the yeast strain BMY40. This study was partly supported by the BL21 Plus Program funded by the Ministry of Education and National Research Foundation (NRF) of Korea (Creative Academy of Ecoscience, 31Z20130012990), partly by the NRF of Korea grant funded by the Ministry of Science, ICT and Future Planning, Korea (No. NRF-2016R1A2B4008050 ), and partly by the Marine Biomaterials Research Center Grant from the Marine Biotechnology Program funded by the Ministry of Oceans and Fisheries, Korea (No. D11013214H480000100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wonja Choi or Wankee Kim.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Nasution, O., Lee, Y.M. et al. Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 101, 229–239 (2017). https://doi.org/10.1007/s00253-016-7898-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7898-5

Keywords

Navigation