High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation

Abstract

Encapsulating bacteria within constrained microenvironments can promote the manifestation of specialized behaviors. Using double-emulsion droplet-generating microfluidic synthesis, live Bacillus subtilis bacteria were encapsulated in a semi-permeable membrane composed of poly(ethylene glycol)-b-poly(d,l-lactic acid) (mPEG-PDLLA). This polymer membrane was sufficiently permeable to permit exponential bacterial growth, metabolite-induced gene expression, and rapid biofilm growth. The biodegradable microparticles retained structural integrity for several days and could be successfully degraded with time or sustained bacterial activity. Microencapsulated B. subtilis successfully captured and contained sodium selenite added outside the polymersomes, converting the selenite into elemental selenium nanoparticles that were selectively retained inside the polymer membrane. This remediation of selenium using polymersomes has high potential for reducing the toxicity of environmental selenium contamination, as well as allowing selenium to be harvested from areas not amenable to conventional waste or water treatment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agency for Toxic Substances and Disease Registry (2003) Toxicological profile for selenium (Update). Atlanta

  2. Borg DJ, Bonifacio E (2011) The use of biomaterials in islet transplantation. Curr Diab Rep 11:434–444. doi:10.1007/s11892-011-0210-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Budde I, Steil L, Scharf C, Volker U, Bremer E (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiol 152:831–853. doi:10.1099/mic.0.28530-0

    CAS  Article  Google Scholar 

  4. Chang CB, Wilking JN, Kim S-H, Shum HC, Weitz DA (2015) Monodisperse emulsion drop microenvironments for bacterial biofilm growth. Small 11:3954–3961. doi:10.1002/smll.201403125

    CAS  Article  PubMed  Google Scholar 

  5. Chen S, Cheng S-X, Zhuo R-X (2011) Self-assembly strategy for the preparation of polymer-based nanoparticles for drug and gene delivery. Macromol Biosci 11:576–589. doi:10.1002/mabi.201000427

    CAS  Article  PubMed  Google Scholar 

  6. Chudobova D, Cihalova K, Dostalova S, Ruttkay-Nedecky B, Rodrigo MAM, Tmejova K, Kopel P, Nejdl L, Kudr J, Gumulec J, Krizkova S, Kynicky J, Kizek R, Adam V (2014) Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett 351:195–201. doi:10.1111/1574-6968.12353

    CAS  Article  PubMed  Google Scholar 

  7. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2014) Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. Int J Pharm 466:400–408. doi:10.1016/j.ijpharm.2014.03.034

    CAS  Article  PubMed  Google Scholar 

  8. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522. doi:10.1016/j.jconrel.2012.01.043

    CAS  Article  PubMed  Google Scholar 

  9. Della Porta G, Castaldo F, Scognamiglio M, Paciello L, Parascandola P, Reverchon E (2012) Bacteria microencapsulation in PLGA microdevices by supercritical emulsion extraction. J Supercrit Fluids 63:1–7. doi:10.1016/j.supflu.2011.12.020

    CAS  Article  Google Scholar 

  10. DeYoung MB, MacConell L, Sarin V, Trautmann M, Herbert P (2011) Encapsulation of exenatide in poly-(d,l-lactide-Co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol Ther 13:1145–1154. doi:10.1089/dia.2011.0050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Dungan RS, Frankenberger WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediat J 3:171–188. doi:10.1080/10889869991219299

    CAS  Article  Google Scholar 

  12. Estevam EC, Witek K, Faulstich L, Nasim MJ, Latacz G, Dominguez-Alvarez E, Kiec-Kononowicz K, Demasi M, Handzlik J, Jacob C (2015) Aspects of a distinct cytotoxicity of selenium salts and organic selenides in living cells with possible implications for drug design. Molecules 20:13894–13912. doi:10.3390/molecules200813894

    Article  PubMed  Google Scholar 

  13. Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850:1642–1660. doi:10.1016/j.bbagen.2014.10.008

    CAS  Article  PubMed  Google Scholar 

  14. Fordyce F (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology, 2nd edn. Springer, pp 375–416

  15. Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204. doi:10.1016/S0009-2541(96)00056-3

    CAS  Article  Google Scholar 

  16. Ho CS, Kim JW, Weitz DA (2008) Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130:9543–9549. doi:10.1021/ja802157y

    Article  Google Scholar 

  17. Holtmann G, Bremer E (2004) Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of the Opu transporters. J Bacteriol 186:1683–1693. doi:10.1128/JB.186.6.1683-1693.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490. doi:10.1016/S0142-9612(00)00115-0

    CAS  Article  PubMed  Google Scholar 

  19. Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3:39–48

    CAS  PubMed  Google Scholar 

  20. Lapage SP, Bascomb S (1968) Use of selenite reduction in bacterial classification. J Appl Bacteriol 31:568–580. doi:10.1111/j.1365-2672.1968.tb00407.x

    CAS  Article  PubMed  Google Scholar 

  21. Lopez D, Vlamakis H, Losick R, Kolter R (2009) Paracrine signaling in a bacterium. Genes Dev 23:1631–1638. doi:10.1101/gad.1813709

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3:1377–1397. doi:10.3390/polym3031377

    CAS  Article  Google Scholar 

  23. Martino C, Kim SH, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, Weitz DA (2012) Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angew Chem Int Ed 51:6416–6420. doi:10.1002/anie.201201443

    CAS  Article  Google Scholar 

  24. Mayumi D, Akutsu-Shigeno Y, Uchiyama H, Nomura N, Nakajima-Kambe T (2008) Identification and characterization of novel poly(DL-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol 79:743–750. doi:10.1007/s00253-008-1477-3

    CAS  Article  PubMed  Google Scholar 

  25. Myers T (2013) Remediation scenarios for selenium contamination, Blackfoot watershed, southeast Idaho, USA. Hydrogeol J 21:655–671. doi:10.1007/s10040-013-0953-8

    CAS  Article  Google Scholar 

  26. Nichols DS, Nichols PD, McMeekin TA (1995) Ecology and physiology of psychrophilic bacteria from Antarctic saline lakes and sea-ice. Sci Prog 78:311–348

    Google Scholar 

  27. Olabisi RM (2015) Cell microencapsulation with synthetic polymers. J Biomed Mater Res A 103:846–859. doi:10.1002/jbm.a.35205

    Article  PubMed  Google Scholar 

  28. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60. doi:10.1128/AEM.70.1.52-60.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Prakash S, Tomaro-Duchesneau C, Saha S, Cantor A (2011) The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J Biomed Biotechnol 2011:981214

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  31. Setlow P (2013) Summer meeting 2013—when the sleepers wake: the germination of spores of Bacillus species. J Appl Microbiol 115:1251–1268. doi:10.1111/jam.12343

    CAS  Article  PubMed  Google Scholar 

  32. Tran PA, Webster TJ (2013) Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology 24:155101. doi:10.1088/0957-4484/24/15/155101

    Article  PubMed  Google Scholar 

  33. U.S. Environmental Protection Agency (1991) Integrated risk information system (IRIS): selenium and compounds. Washington, D.C.

    Google Scholar 

  34. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541. doi:10.1126/science.1109164

    CAS  Article  PubMed  Google Scholar 

  35. Wallenberg M, Misra S, Bjornstedt M (2014) Selenium cytotoxicity in cancer. Basic Clin Pharmacol Toxicol 114:377–386. doi:10.1111/bcpt.12207

    CAS  Article  PubMed  Google Scholar 

  36. Wang Q, Webster TJ (2013) Nanostructured selenium—a novel biologically-inspired material for antibacterial medical device applications. In: Biomimetics. Wiley, Inc., pp. 203–220

    Google Scholar 

  37. Wang Q, Larese-Casanova P, Webster TJ (2015) Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels. Int J Nanomedicine 10:2885–2894. doi:10.2147/IJN.S78466

    CAS  PubMed  PubMed Central  Google Scholar 

  38. World Health Organization (1996) Trace elements in human nutrition and health. WHO, Geneva

  39. Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257–269. doi:10.1016/S0147-6513(03)00064-2

    CAS  Article  PubMed  Google Scholar 

  40. Yano K, Wada T, Suzuki S, Tagami K, Matsumoto T, Shiwa Y, Ishige T, Kawaguchi Y, Masuda K, Akanuma G, Nanamiya H, Niki H, Yoshikawa H, Kawamura F (2013) Multiple rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis. Microbiology 159:2225–2236. doi:10.1099/mic.0.067025-0

    CAS  Article  PubMed  Google Scholar 

  41. Zhang Y, Ho Y-P, Chiu Y-L, Chan HF, Chlebina B, Schuhmann T, You L, Leong KW (2013) A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials 34:4564–4572. doi:10.1016/j.biomaterials.2013.03.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Special thanks to Alireza Abbaspourrad and David A. Weitz for the demonstration of double-emulsion microfluidic device assembly techniques.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne L. van de Ven.

Ethics declarations

Funding

This work was supported in part by the National Science Foundation (NSF) DGE-0965843, Department of Defense (DOD) W81XWH-09-2-0001, National Cancer Institute (NCI) 1R25CA174650-01A, a startup grant from Northeastern University, and the Electronics Materials Research Institute at Northeastern University. Undergraduates J.B., K.G., and C.K. were supported by the Northeastern University Provost Undergraduate Research Award, Honors Early Research Grant, and Advanced Research/Creative Endeavor Award.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Jacob Barlow and Kevin Gozzi contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 93 kb)

ESM 2

(M4V 1736 kb)

ESM 3

(M4V 8260 kb)

ESM 4

(M4V 1573 kb)

ESM 5

(M4V 552 kb)

ESM 6

(M4V 574 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barlow, J., Gozzi, K., Kelley, C.P. et al. High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation. Appl Microbiol Biotechnol 101, 455–464 (2017). https://doi.org/10.1007/s00253-016-7896-7

Download citation

Keywords

  • Microparticles
  • Microfluidics
  • Double-emulsion
  • Bacteria
  • Biofilm
  • Selenite
  • Nanoparticles