Applied Microbiology and Biotechnology

, Volume 101, Issue 1, pp 455–464 | Cite as

High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation

  • Jacob Barlow
  • Kevin Gozzi
  • Chase P. Kelley
  • Benjamin M. Geilich
  • Thomas J. Webster
  • Yunrong Chai
  • Srinivas Sridhar
  • Anne L. van de Ven
Environmental biotechnology

Abstract

Encapsulating bacteria within constrained microenvironments can promote the manifestation of specialized behaviors. Using double-emulsion droplet-generating microfluidic synthesis, live Bacillus subtilis bacteria were encapsulated in a semi-permeable membrane composed of poly(ethylene glycol)-b-poly(d,l-lactic acid) (mPEG-PDLLA). This polymer membrane was sufficiently permeable to permit exponential bacterial growth, metabolite-induced gene expression, and rapid biofilm growth. The biodegradable microparticles retained structural integrity for several days and could be successfully degraded with time or sustained bacterial activity. Microencapsulated B. subtilis successfully captured and contained sodium selenite added outside the polymersomes, converting the selenite into elemental selenium nanoparticles that were selectively retained inside the polymer membrane. This remediation of selenium using polymersomes has high potential for reducing the toxicity of environmental selenium contamination, as well as allowing selenium to be harvested from areas not amenable to conventional waste or water treatment.

Keywords

Microparticles Microfluidics Double-emulsion Bacteria Biofilm Selenite Nanoparticles 

Supplementary material

253_2016_7896_MOESM1_ESM.pdf (94 kb)
ESM 1(PDF 93 kb)
253_2016_7896_MOESM2_ESM.m4v (1.7 mb)
ESM 2(M4V 1736 kb)
253_2016_7896_MOESM3_ESM.m4v (8.1 mb)
ESM 3(M4V 8260 kb)
253_2016_7896_MOESM4_ESM.m4v (1.5 mb)
ESM 4(M4V 1573 kb)
253_2016_7896_MOESM5_ESM.m4v (552 kb)
ESM 5(M4V 552 kb)
253_2016_7896_MOESM6_ESM.m4v (575 kb)
ESM 6(M4V 574 kb)

References

  1. Agency for Toxic Substances and Disease Registry (2003) Toxicological profile for selenium (Update). AtlantaGoogle Scholar
  2. Borg DJ, Bonifacio E (2011) The use of biomaterials in islet transplantation. Curr Diab Rep 11:434–444. doi:10.1007/s11892-011-0210-2 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Budde I, Steil L, Scharf C, Volker U, Bremer E (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiol 152:831–853. doi:10.1099/mic.0.28530-0 CrossRefGoogle Scholar
  4. Chang CB, Wilking JN, Kim S-H, Shum HC, Weitz DA (2015) Monodisperse emulsion drop microenvironments for bacterial biofilm growth. Small 11:3954–3961. doi:10.1002/smll.201403125 CrossRefPubMedGoogle Scholar
  5. Chen S, Cheng S-X, Zhuo R-X (2011) Self-assembly strategy for the preparation of polymer-based nanoparticles for drug and gene delivery. Macromol Biosci 11:576–589. doi:10.1002/mabi.201000427 CrossRefPubMedGoogle Scholar
  6. Chudobova D, Cihalova K, Dostalova S, Ruttkay-Nedecky B, Rodrigo MAM, Tmejova K, Kopel P, Nejdl L, Kudr J, Gumulec J, Krizkova S, Kynicky J, Kizek R, Adam V (2014) Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett 351:195–201. doi:10.1111/1574-6968.12353 CrossRefPubMedGoogle Scholar
  7. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2014) Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. Int J Pharm 466:400–408. doi:10.1016/j.ijpharm.2014.03.034 CrossRefPubMedGoogle Scholar
  8. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522. doi:10.1016/j.jconrel.2012.01.043 CrossRefPubMedGoogle Scholar
  9. Della Porta G, Castaldo F, Scognamiglio M, Paciello L, Parascandola P, Reverchon E (2012) Bacteria microencapsulation in PLGA microdevices by supercritical emulsion extraction. J Supercrit Fluids 63:1–7. doi:10.1016/j.supflu.2011.12.020 CrossRefGoogle Scholar
  10. DeYoung MB, MacConell L, Sarin V, Trautmann M, Herbert P (2011) Encapsulation of exenatide in poly-(d,l-lactide-Co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol Ther 13:1145–1154. doi:10.1089/dia.2011.0050 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dungan RS, Frankenberger WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediat J 3:171–188. doi:10.1080/10889869991219299 CrossRefGoogle Scholar
  12. Estevam EC, Witek K, Faulstich L, Nasim MJ, Latacz G, Dominguez-Alvarez E, Kiec-Kononowicz K, Demasi M, Handzlik J, Jacob C (2015) Aspects of a distinct cytotoxicity of selenium salts and organic selenides in living cells with possible implications for drug design. Molecules 20:13894–13912. doi:10.3390/molecules200813894 CrossRefPubMedGoogle Scholar
  13. Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850:1642–1660. doi:10.1016/j.bbagen.2014.10.008 CrossRefPubMedGoogle Scholar
  14. Fordyce F (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology, 2nd edn. Springer, pp 375–416Google Scholar
  15. Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204. doi:10.1016/S0009-2541(96)00056-3 CrossRefGoogle Scholar
  16. Ho CS, Kim JW, Weitz DA (2008) Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130:9543–9549. doi:10.1021/ja802157y CrossRefGoogle Scholar
  17. Holtmann G, Bremer E (2004) Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of the Opu transporters. J Bacteriol 186:1683–1693. doi:10.1128/JB.186.6.1683-1693.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490. doi:10.1016/S0142-9612(00)00115-0 CrossRefPubMedGoogle Scholar
  19. Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3:39–48PubMedGoogle Scholar
  20. Lapage SP, Bascomb S (1968) Use of selenite reduction in bacterial classification. J Appl Bacteriol 31:568–580. doi:10.1111/j.1365-2672.1968.tb00407.x CrossRefPubMedGoogle Scholar
  21. Lopez D, Vlamakis H, Losick R, Kolter R (2009) Paracrine signaling in a bacterium. Genes Dev 23:1631–1638. doi:10.1101/gad.1813709 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3:1377–1397. doi:10.3390/polym3031377 CrossRefGoogle Scholar
  23. Martino C, Kim SH, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, Weitz DA (2012) Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angew Chem Int Ed 51:6416–6420. doi:10.1002/anie.201201443 CrossRefGoogle Scholar
  24. Mayumi D, Akutsu-Shigeno Y, Uchiyama H, Nomura N, Nakajima-Kambe T (2008) Identification and characterization of novel poly(DL-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol 79:743–750. doi:10.1007/s00253-008-1477-3 CrossRefPubMedGoogle Scholar
  25. Myers T (2013) Remediation scenarios for selenium contamination, Blackfoot watershed, southeast Idaho, USA. Hydrogeol J 21:655–671. doi:10.1007/s10040-013-0953-8 CrossRefGoogle Scholar
  26. Nichols DS, Nichols PD, McMeekin TA (1995) Ecology and physiology of psychrophilic bacteria from Antarctic saline lakes and sea-ice. Sci Prog 78:311–348Google Scholar
  27. Olabisi RM (2015) Cell microencapsulation with synthetic polymers. J Biomed Mater Res A 103:846–859. doi:10.1002/jbm.a.35205 CrossRefPubMedGoogle Scholar
  28. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60. doi:10.1128/AEM.70.1.52-60.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Prakash S, Tomaro-Duchesneau C, Saha S, Cantor A (2011) The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J Biomed Biotechnol 2011:981214CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  31. Setlow P (2013) Summer meeting 2013—when the sleepers wake: the germination of spores of Bacillus species. J Appl Microbiol 115:1251–1268. doi:10.1111/jam.12343 CrossRefPubMedGoogle Scholar
  32. Tran PA, Webster TJ (2013) Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology 24:155101. doi:10.1088/0957-4484/24/15/155101 CrossRefPubMedGoogle Scholar
  33. U.S. Environmental Protection Agency (1991) Integrated risk information system (IRIS): selenium and compounds. Washington, D.C.Google Scholar
  34. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541. doi:10.1126/science.1109164 CrossRefPubMedGoogle Scholar
  35. Wallenberg M, Misra S, Bjornstedt M (2014) Selenium cytotoxicity in cancer. Basic Clin Pharmacol Toxicol 114:377–386. doi:10.1111/bcpt.12207 CrossRefPubMedGoogle Scholar
  36. Wang Q, Webster TJ (2013) Nanostructured selenium—a novel biologically-inspired material for antibacterial medical device applications. In: Biomimetics. Wiley, Inc., pp. 203–220CrossRefGoogle Scholar
  37. Wang Q, Larese-Casanova P, Webster TJ (2015) Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels. Int J Nanomedicine 10:2885–2894. doi:10.2147/IJN.S78466 PubMedPubMedCentralGoogle Scholar
  38. World Health Organization (1996) Trace elements in human nutrition and health. WHO, GenevaGoogle Scholar
  39. Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257–269. doi:10.1016/S0147-6513(03)00064-2 CrossRefPubMedGoogle Scholar
  40. Yano K, Wada T, Suzuki S, Tagami K, Matsumoto T, Shiwa Y, Ishige T, Kawaguchi Y, Masuda K, Akanuma G, Nanamiya H, Niki H, Yoshikawa H, Kawamura F (2013) Multiple rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis. Microbiology 159:2225–2236. doi:10.1099/mic.0.067025-0 CrossRefPubMedGoogle Scholar
  41. Zhang Y, Ho Y-P, Chiu Y-L, Chan HF, Chlebina B, Schuhmann T, You L, Leong KW (2013) A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials 34:4564–4572. doi:10.1016/j.biomaterials.2013.03.002 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jacob Barlow
    • 1
  • Kevin Gozzi
    • 2
  • Chase P. Kelley
    • 1
  • Benjamin M. Geilich
    • 3
  • Thomas J. Webster
    • 1
    • 4
  • Yunrong Chai
    • 2
  • Srinivas Sridhar
    • 5
    • 6
  • Anne L. van de Ven
    • 5
    • 6
  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  2. 2.Department of BiologyNortheastern UniversityBostonUSA
  3. 3.Department of BioengineeringNortheastern UniversityBostonUSA
  4. 4.Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Department of PhysicsNortheastern UniversityBostonUSA
  6. 6.Nanomedicine Science and Technology CenterNortheastern UniversityBostonUSA

Personalised recommendations