Skip to main content
Log in

Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mixed-culture fermentation that does not require an energy-intensive sterilization process is a viable approach for the economically feasible production of lactic acid (LA) due to the potential use of organic waste as feedstock. This study investigated mixed-culture LA fermentation of whey, a high-strength organic wastewater, in continuous mode. Variations in the hydraulic retention time (HRT) from 120 to 8 h under different pH regimes in two thermophilic reactors (55 °C) were compared for their fermentation performance. One reactor was maintained at a low pH (pH 3.0) during operation at HRTs of 120 to 24 h and then adjusted to pH 5.5 in the later phases of fermentation at HRTs of 24 to 8 h (R1), while the second reactor was maintained at pH 5.5 throughout the experiment (R2). Although the LA production in R1 was negligible at low pH, it increased dramatically after the pH was raised to 5.5 and exceeded that in R2 when stabilized at HRTs of 8 and 12 h. The maximum yield (0.62 g LA/g substrate fed as the chemical oxygen demand (COD) equivalent), the production rate (11.5 g/L day), and the selectivity (95 %) of LA were all determined at a 12-h HRT in R1. Additionally, molecular and statistical analyses revealed that changes in the HRT and the pH significantly affected the bacterial community structure and thus the fermentation characteristics of the experimental reactors. Bacillus coagulans was likely the predominant LA producer in both reactors. The overall results suggest that low pH start-up has a positive effect on yield and selectivity in mixed-culture LA fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    Article  CAS  PubMed  Google Scholar 

  • Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78

    Article  CAS  PubMed  Google Scholar 

  • Akao S, Tsuno H, Horie T, Mori S (2007) Effects of pH and temperature on products and bacterial community in L-lactate batch fermentation of garbage under unsterile condition. Water Res 41:2636–2642

    Article  CAS  PubMed  Google Scholar 

  • APHA-AWWA-WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Baek G, Kim J, Lee C (2014) Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor. Bioresource Technol 166:596–601

    Article  CAS  Google Scholar 

  • Baek G, Kim J, Cho K, Bae H, Lee C (2015) The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation. Appl Microbiol Biotechnol 99:10355–10366

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT (2005) Bergey’s manual of systematic bacteriology, vol. 2: the Proteobacteria, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Chang J-J, Wu J-H, Wen F-S, Hung K-Y, Chen Y-T, Hsiao C-L, Lin C-Y, Huang C-C (2008) Molecular monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int J Hydrog Energy 33:1579–1585

    Article  CAS  Google Scholar 

  • Cheng Y, Guo Z, Liu X, Yin H, Qiu G, Pan F, Liu H (2009) The bioleaching feasibility for Pb/Zn smelting slag and community characteristics of indigenous moderate-thermophilic bacteria. Bioresour Technol 100:2737–2740

    Article  CAS  PubMed  Google Scholar 

  • Davelaar D (1993) Ecological significance of bacterial polyphosphate metabolism in sediments. Hydrobiologia 253:179–192

    Article  CAS  Google Scholar 

  • De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2009) Bergey’s manual of systematic bacteriology, vol. 3: the Fermicutes, 2nd edn. Springer, New York

    Google Scholar 

  • dos Santos AB, de Madrid MP, de Bok FAM, Stams AJM, van Lier JB, Cervantes FJ (2006) The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium. Enzym Microb Technol 39:38–46

    Article  CAS  Google Scholar 

  • Gannoun H, Bouallagui H, Okbi A, Sayadi S, Hamdi M (2009) Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. J Hazard Mater 170:263–271

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-i, Ludwig W, Whitman WB (2012) Bergey’s manual of systematic bacteriology, vol. 5: the Actinobacteria, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamberger A, Horn MA, Dumont MG, Murrell JC, Drake HL (2008) Anaerobic consumers of monosaccharides in a moderately acidic fen. Appl Environ Microbiol 74:3112–3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hidaka T, Horie T, Akao S, Tsuno H (2010) Kinetic model of thermophilic L-lactate fermentation by Bacillus coagulans combined with real-time PCR quantification. Water Res 44:2554–2562

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi J-I, Shimizu T, Tada K, Kanno T, Kobayashi M (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82:209–213

    Article  CAS  PubMed  Google Scholar 

  • Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365

    Article  CAS  Google Scholar 

  • Hyronimus B, Le Marrec C, Hadj Sassi A, Deschamps A (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193–197

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Tada K, Kanno T, Horiuchi J-I (2012) Selective production of lactic acid in continuous anaerobic acidogenesis by extremely low pH operation. J Biosci Bioeng 114:537–539

    Article  CAS  PubMed  Google Scholar 

  • Jo Y, Kim J, Hwang S, Lee C (2015) Anaerobic treatment of rice winery wastewater in an upflow filter packed with steel slag under different hydraulic loading conditions. Bioresour Technol 193:53–61

    Article  CAS  PubMed  Google Scholar 

  • Jones MV, Spencer WN, Edwards C (1984) Temperature-dependent azide sensitivity of growth and ATPase activity in the facultative thermophile, Bacillus coagulans. Microbiology 130:95–101

    Article  CAS  Google Scholar 

  • Kawamura Y, Fujiwara N, Naka T, Mitani A, Kubota H, Tomida J, Morita Y, Hitomi J (2012) Genus Enhydrobacter Staley et al. 1987 should be recognized as a member of the family Rhodospirillaceae within the class Alphaproteobacteria. Microbiol Immunol 56:21–26

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Lim W-T, Lee M-K, Kim M-S (2012) Effect of temperature on continuous fermentative lactic acid (LA) production and bacterial community, and development of LA-producing UASB reactor. Bioresour Technol 119:355–361

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee S, Lee C (2013) Comparative study of changes in reaction profile and microbial community structure in two anaerobic repeated-batch reactors started up with different seed sludges. Bioresour Technol 129:495–505

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Lee M-K, Moon C, Yun Y-M, Lee W, Oh S-E, Kim M-S (2014) Effect of hydraulic retention time on lactic acid production and granulation in an up-flow anaerobic sludge blanket reactor. Bioresour Technol 165:158–161

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Bryan CG, Hallberg KB, Johnson DB (2011) Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Environ Microbiol 13:2092–2104

    Article  CAS  PubMed  Google Scholar 

  • Liang S, McDonald AG, Coats ER (2015) Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manag 45:51–56

    Article  CAS  PubMed  Google Scholar 

  • Lorca G, Raya R, Taranto M, De Valdez G (1998) Adaptive acid tolerance response in Lactobacillus acidophilus. Biotechnol Lett 20:239–241

    Article  CAS  Google Scholar 

  • Margaritis A, Kilonzo P (2005) Production of ethanol using immobilised cell bioreactor systems. In: Nedović V, Willaert R (eds) Applications of cell immobilisation biotechnology. Focus on biotechnology, vol 8B. Springer, The Netherlands, pp. 375–405

    Chapter  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Glenden Beach, OR, USA

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson G, Solymos P, Stevens M, Wagner H (2015) Vegan: community ecology package. R package version 2.2–1

  • O’Reilly J, Lee C, Chinalia F, Collins G, Mahony T, O’Flaherty V (2010) Microbial community dynamics associated with biomass granulation in low-temperature (15 °C) anaerobic wastewater treatment bioreactors. Bioresour Technol 101:6336–6344

    Article  CAS  PubMed  Google Scholar 

  • Ou M, Ingram L, Shanmugam KT (2011) L(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J Ind Microbiol Biotechnol 38:599–605

    Article  CAS  PubMed  Google Scholar 

  • Payot T, Chemaly Z, Fick M (1999) Lactic acid production by Bacillus coagulans - kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzym Microb Technol 24:191–199

    Article  CAS  Google Scholar 

  • Perfumo A, Banat I, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72:132–138

    Article  CAS  PubMed  Google Scholar 

  • Qiu G, Song Y-h, Zeng P, Duan L, Xiao S (2013) Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment. Bioresour Technol 142:52–62

    Article  CAS  PubMed  Google Scholar 

  • Raymond Y, Morin A, Champagne C, Cormier F (1991) Enhancement of fruity aroma production of Pseudomonas fragi grown on skim milk, whey and whey permeate supplemented with C3-C7 fatty acids. Appl Microbiol Biotechnol 34:524–527

    Article  CAS  Google Scholar 

  • Ren N, Wang B, Huang J-C (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:428–433

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez J, Kleerebezem R, Lema JM, van Loosdrecht M (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93:592–606

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Rebroš M, Krištofíková L, Malátová K (2005) High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats. Biotechnol Lett 27:1943–1947

    Article  CAS  PubMed  Google Scholar 

  • Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold. Int Dairy J 18:695–704

    Article  CAS  Google Scholar 

  • Soriano-Perez S, Flores-Velez L, Alonso-Davila P, Cervantes-Cruz G, Arriaga S (2012) Production of lactic acid from cheese whey by batch cultures of Lactobacillus helveticus. Ann Microbiol 62:313–317

    Article  CAS  Google Scholar 

  • Supaphol S, Jenkins SN, Intomo P, Waite IS, O’Donnell AG (2011) Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. Bioresour Technol 102:4021–4027

    Article  CAS  PubMed  Google Scholar 

  • Temudo MF, Kleerebezem R, van Loosdrecht M (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 98:69–79

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Zhang X, Feng H, Xu T (2013) In-situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: continuous operation. Bioresour Technol 147:442–448

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Yang H, Guo L (2010) Effect of operation parameters on anaerobic fermentation using cow dung as a source of microorganisms. Int J Hydrog Energy 35:46–51

    Article  CAS  Google Scholar 

  • Wu Y, Ma H, Zheng M, Wang K (2015) Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresour Technol 191:53–58

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2015R1A5A7037825) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) through “Human Resources Program in Energy Technology” (No. 20164030201010) funded by the Ministry of Trade, Industry and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsoo Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G., Kim, J. & Lee, C. Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent. Appl Microbiol Biotechnol 100, 10179–10191 (2016). https://doi.org/10.1007/s00253-016-7871-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7871-3

Keywords

Navigation