Skip to main content

Nonribosomal peptide synthetase with a unique iterative-alternative-optional mechanism catalyzes amonabactin synthesis in Aeromonas

Abstract

Based on the exploration of data generated by genome sequencing, a bioinformatics approach has been chosen to identify the biosynthetic pathway of the siderophores produced by Aeromonas species. The amonabactins, considered as a virulence factor, represent a family of four variants of catechol peptidic siderophores containing Dhb, Lys, Gly, and an aromatic residue either Trp or Phe in a D-configuration. The synthesis operon is constituted of seven genes named amoCEBFAGH and is iron-regulated. The cluster includes genes encoding proteins involved in the synthesis and incorporation of the Dhb monomer, and genes encoding specific nonribosomal peptide synthetases, which are responsible for the building of the peptidic moiety. The amonabactin assembly line displays a still so far not described atypical mode of synthesis that is iterative, alternative, and optional. A disruption mutant in the adenylation domain of AmoG was unable to synthesize any amonabactin and to grow in iron stress conditions while a deletion of amoH resulted in the production of only two over the four forms. The amo cluster is widespread among most of the Aeromonas species, only few species produces the enterobactin siderophore.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anand S, Prasad MVR, Yadav G, Kumar N, Shehara J, Ansari MZ, Mohanty D (2010) SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res 38:W487–W496. doi:10.1093/nar/gkq340

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Austin B, Austin DA (2007) Bacterial fish pathogens: diseases of farmed and wild fish, 4th edn. Praxis Publishing Ltd, Chichester

    Google Scholar 

  3. Bachmann BO, Ravel J (2009) Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Meth Enzymol 458:181–217

    CAS  Article  PubMed  Google Scholar 

  4. Balado M, Souto A, Vences A, Careaga VP, Valderrama K, Segade Y, Rodríguez J, Osorio CR, Jiménez C, Lemos ML (2015) Two catechol siderophores, acinetobactin and amonabactin, are simultaneously produced by Aeromonas salmonicida subsp. salmonicida sharing part of the biosynthetic pathway. ACS Chem Biol 10(12):2850–2860. doi:10.1021/acschembio.5b00624

    CAS  Article  PubMed  Google Scholar 

  5. Barghouthi S, Young R, Arceneaux JEL, Byers BR (1989a) Physiological control of amonabactin biosynthesis in Aeromonas hydrophila. Biol Met 2(3):155–160. doi:10.1007/bf01142554

    CAS  Article  PubMed  Google Scholar 

  6. Barghouthi S, Young R, Olson MO, Arceneaux JE, Clem LW, Byers BR (1989b) Amonabactin, a novel tryptophan- or phenylalanine-containing phenolate siderophore in Aeromonas hydrophila. J Bacteriol 171(4):1811–1816

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barghouthi S, Payne SM, Arceneaux JE, Byers BR (1991) Cloning, mutagenesis, and nucleotide sequence of a siderophore biosynthetic gene (amoA) from Aeromonas hydrophila. J Bacteriol 173(16):5121–5128

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Beaz-Hidalgo R, Figueras MJ (2013) Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J Fish Dis 36(4):371–388. doi:10.1111/jfd.12025

    CAS  Article  PubMed  Google Scholar 

  9. Caboche S, Leclère V, Pupin M, Kucherov G, Jacques P (2010) Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J Bacteriol 192(19):5143–5150. doi:10.1128/jb.00315-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Caradec T, Pupin M, Vanvlassenbroeck A, Devignes M-D, Smaïl-Tabbone M, Jacques P, Leclère V (2014) Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery. PLoS One 9(1):e85667. doi:10.1371/journal.pone.0085667

    Article  PubMed  PubMed Central  Google Scholar 

  11. Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem 6(4):601–611. doi:10.1002/cbic.200400283

    CAS  Article  PubMed  Google Scholar 

  12. Coscelli GA, Bermúdez R, Losada AP, Faílde LD, Santos Y, Quiroga MI (2014) Acute Aeromonas salmonicida infection in turbot (Scophthalmus maximus L.). Histopathological and immunohistochemical studies. aquac 430(0):79–85. doi:10.1016/j.aquaculture.2014.04.002

    CAS  Article  Google Scholar 

  13. Daskalov H (2006) The importance of Aeromonas hydrophila in food safety. Food Control 17(6):474–483. doi:10.1016/j.foodcont.2005.02.009

    Article  Google Scholar 

  14. Dennis JJ, Zylstra GJ (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol 64(7):2710–2715

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Escolar L, Pérez-Martín J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181(20):6223–6229

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Esmaeel Q, Pupin M, Kieu NP, Chataigné G, Béchet M, Deravel J, Krier F, Höfte M, Jacques P, Leclère V (2016) Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. MicrobiolOpen 5(3):512–526. doi:10.1002/mbo3.347

    CAS  Article  Google Scholar 

  17. Farto R, Milton D, Bermúdez M, Nieto T (2011) Colonization of turbot tissues by virulent and avirulent Aeromonas salmonicida subsp. salmonicida strains during infection. Dis Aquat Org 95(2):167–173. doi:10.3354/dao02342

    CAS  Article  PubMed  Google Scholar 

  18. Flissi A, Dufresne Y, Michalik J, Tonon L, Janot S, Noé L, Jacques P, Leclère V, Pupin M (2015) Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Res 44(D1):D1113–D1118. doi:10.1093/nar/gkv1143

    Article  PubMed  PubMed Central  Google Scholar 

  19. Funahashi T, Tanabe T, Miyamoto K, Tsujibo H, Maki J, Yamamoto S (2013) Characterization of a gene encoding the outer membrane receptor for ferric enterobactin in Aeromonas hydrophila ATCC 7966 T. Biosci Biotechnol Biochem 77(2):353–360. doi:10.1271/bbb.120774

    CAS  Article  PubMed  Google Scholar 

  20. Gehring AM, Mori I, Walsh CT (1998) Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37(8):2648–2659. doi:10.1021/bi9726584

    CAS  Article  PubMed  Google Scholar 

  21. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23(1):35–73. doi:10.1128/cmr.00039-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Leclère V, Béchet M, Blondeau R (2004) Functional significance of a periplasmic Mn-superoxide dismutase from Aeromonas hydrophila. J Appl Microbiol 96(4):828–833. doi:10.1111/j.1365-2672.2004.02231.x

    Article  PubMed  Google Scholar 

  23. Leclère V, Beaufort S, Dessoy S, Dehottay P, Jacques P (2009) Development of a biological test to evaluate the bioavailability of iron in culture media. J Appl Microbiol 107(5):1598–1605. doi:10.1111/j.1365-2672.2009.04345.x

    Article  PubMed  Google Scholar 

  24. Massad G, Arceneaux JEL, Byers BR (1991) Acquisition of iron from host sources by mesophilic Aeromonas species. J Gen Microbiol 137(2):237–241. doi:10.1099/00221287-137-2-237

    CAS  Article  PubMed  Google Scholar 

  25. Massad G, Arceneaux JEL, Byers BR (1994) Diversity of siderophore genes encoding biosynthesis of 2,3-dihydroxybenzoic acid in Aeromonas spp. Biometals 7(3):227–236. doi:10.1007/bf00149553

    CAS  Article  PubMed  Google Scholar 

  26. May JJ, Wendrich TM, Marahiel MA (2001) The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276(10):7209–7217. doi:10.1074/jbc.M009140200

    CAS  Article  PubMed  Google Scholar 

  27. Merino S, Rubires X, Knøchel S, Tomás JM (1995) Emerging pathogens: Aeromonas spp. Int J Food Microbiol 28(2):157–168. doi:10.1016/0168-1605(95)00054-2

    CAS  Article  PubMed  Google Scholar 

  28. Najimi M, Lemos M, Osorio C (2008) Identification of siderophore biosynthesis genes essential for growth of Aeromonas salmonicida under iron limitation conditions. Appl Environ Microbiol 74:2341–2348. doi:10.1128/AEM.02728-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Payne SM (1994) Detection, isolation, and characterization of siderophores. Meth Enzymol 235:329–344

    CAS  Article  PubMed  Google Scholar 

  30. Pupin M, Esmaeel Q, Flissi A, Dufresne Y, Jacques P, Leclère V (2015) Norine: a powerful resource for novel nonribosomal peptide discovery. Synth Syst Biotechnol 1(2):89–94. doi:10.1016/j.synbio.2015.11.001

    Article  Google Scholar 

  31. Rausch C, Hoof I, Weber T, Wohlleben W, Huson D (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evolutionary Biol 7(1):78. doi:10.1186/1471-2148-7-78

    Article  Google Scholar 

  32. Reith M, Singh R, Curtis B, Boyd J, Bouevitch A, Kimball J, Munholland J, Murphy C, Sarty D, Williams J, Nash J, Johnson S, Brown L (2008) The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genom 9(1):427. doi:10.1186/1471-2164-9-427

    Article  Google Scholar 

  33. Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor 2- a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. doi:10.1093/nar/gkr323

    PubMed  PubMed Central  Google Scholar 

  34. Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci 100(19):10983–10988. doi:10.1073/pnas.1834303100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. doi:10.1016/0003-2697(87)90612-9

    CAS  Article  PubMed  Google Scholar 

  36. Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, Haft D, Wu M, Ren Q, Rosovitz MJ, Madupu R, Tallon L, Kim M, Jin S, Vuong H, Stine OC, Ali A, Horneman AJ, Heidelberg JF (2006) Genome sequence of Aeromonas hydrophila ATCC 7966 T. J Bacteriol 188(23):8272–8282. doi:10.1128/jb.00621-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Shanks RMQ, Caiazza NC, Hinsa SM, Toutain CM, O’Toole GA (2006) Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from Gram-negative bacteria. Appl Environ Microbiol 72(7):5027–5036. doi:10.1128/aem.00682-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Strieker M, Tanović A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20(2):234–240. doi:10.1016/j.sbi.2010.01.009

    CAS  Article  PubMed  Google Scholar 

  39. Telford JR, Raymond KN (1997) Amonabactin: a family of novel siderophores from a pathogenic bacterium. JBIC 2(6):750–761. doi:10.1007/s007750050191

    CAS  Article  Google Scholar 

  40. Telford JR, Leary JA, Tunstad LMG, Byers BR, Raymond KN (1994) Amonabactin: characterization of a series of siderophores from Aeromonas hydrophila. J Am Chem Soc 116(10):4499–4500. doi:10.1021/ja00089a058

    CAS  Article  Google Scholar 

  41. Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquac 246(1–4):37–61. doi:10.1016/j.aquaculture.2005.01.002

    Article  Google Scholar 

  42. Van Lanen SG, Shen B (2006) Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 9(3):252–260. doi:10.1016/j.mib.2006.04.002

    CAS  Article  PubMed  Google Scholar 

  43. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. doi:10.1093/nar/gkv437

    Google Scholar 

  44. Yu HB, Zhang YL, Lau YL, Yao F, Vilches S, Merino S, Tomas JM, Howard SP, Leung KY (2005) Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91. Appl Environ Microbiol 71(8):4469–4477. doi:10.1128/aem.71.8.4469-4477.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7(3):e34064. doi:10.1371/journal.pone.0034064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Lille 1, the INTERREG IV program France-Wallonie-Vlaanderen (Phytobio project), the bioinformatics platform bilille and Inria. QE received financial support from Sana’a University (Yemen).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qassim Esmaeel.

Ethics declarations

Funding

The work was funded by the University of Lille 1, the INTERREG IV program France-Wallonie-Vlaanderen (Phytobio project), the bioinformatics platform bilille, and Inria. QE received financial support from Sana’a University (Yemen).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 1249 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esmaeel, Q., Chevalier, M., Chataigné, G. et al. Nonribosomal peptide synthetase with a unique iterative-alternative-optional mechanism catalyzes amonabactin synthesis in Aeromonas . Appl Microbiol Biotechnol 100, 8453–8463 (2016). https://doi.org/10.1007/s00253-016-7773-4

Download citation

Keywords

  • Aeromonas
  • Amonabactin
  • Nonribosomal peptide synthetase
  • Siderophore
  • NRPS