Skip to main content

Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha


Isolate B17 from Kombucha was estimated to be an efficient producer of bacterial cellulose (BC). The isolate was deposited under the number P 1463 and identified as Komagataeibacter rhaeticus by comparing a generated amplified fragment length polymorphism (AFLP™) DNA fingerprint against a reference database. Static cultivation of the K. rhaeticus strain P 1463 in Hestrin and Schramm (HS) medium resulted in 4.40 ± 0.22 g/L BC being produced, corresponding to a BC yield from glucose of 25.30 ± 1.78 %, when the inoculum was made with a modified HS medium containing 10 g/L glucose. Fermentations for 5 days using media containing apple juice with analogous carbon source concentrations resulted in 4.77 ± 0.24 g/L BC being synthesised, corresponding to a yield from the consumed sugars (glucose, fructose and sucrose) of 37.00 ± 2.61 %. The capacity of K. rhaeticus strain P 1463 to synthesise BC was found to be much higher than that of two reference strains for cellulose production, Komagataeibacter xylinus DSM 46604 and Komagataeibacter hansenii DSM 5602T, and was also considerably higher than that of K. hansenii strain B22, isolated from another Kombucha sample. The BC synthesised by K. rhaeticus strain P 1463 after 40 days of cultivation in HS medium with additional glucose supplemented to the cell culture during cultivation was shown to have a degree of polymerization of 3300.0 ± 122.1 glucose units, a tensile strength of 65.50 ± 3.27 MPa and a length at break of 16.50 ± 0.83 km. For the other strains, these properties did not exceed 25.60 ± 1.28 MPa and 15.20 ± 0.76 km.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Aydin Y, Aksoy N (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065–1075

    CAS  Article  PubMed  Google Scholar 

  2. Benziman M, Haigler CH, Brown MR, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci U S A 77:6678–6682

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Carrillo F, Colom X, Sunol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibers. Eur Polym J 40:2229–2234

    CAS  Article  Google Scholar 

  4. Castro C, Cleenwerck I, Trček J, Zuluaga R, De Vos P, Caro G, Aguirre R, Putaux JL, Gañán P (2013) Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Bacteriol 63:1119–1125

    CAS  Article  Google Scholar 

  5. Cleenwerck I, De Wachter M, González A, De Vuyst L, De Vos P (2009) Differentiation of species of the family of Acetobacteriaceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. Int J Syst Evol Microbiol 59:1771–1786

    CAS  Article  PubMed  Google Scholar 

  6. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose- the natural power to heal wounds. Biomaterials 27:145–151

    CAS  Article  PubMed  Google Scholar 

  7. Dziedzic SZ, Kearsley MW (1995) Handbook of starch hydrolysis products and their derivatives. Blackie Academic and Professional, London

    Google Scholar 

  8. Dos Santos RAC, Berretta AA, Barud H, Ribeiro SJL, Gonzalez-Garcia LN, Zucchi TD, Goldman GH, Riano-Pachon DM (2014) Draft genome sequence of Komagataeibacter rhaeticus strain AF1, a high producer of cellulose, isolated from Kombucha tea. Genome Announc 2(4):e00731–e00714

    Article  PubMed  PubMed Central  Google Scholar 

  9. El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3(4):1196–1217

    CAS  Google Scholar 

  10. Gama M, Gatenholm P, Klemm D (2013) Bacterial nanocellulose: a sophistical multifunctional material. CRC Press, Tokyo and French Group, Boca Raton, London, New York

    Google Scholar 

  11. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. ISO 1924-2:2008 Paper and broad. Determination of tensile properties. ISO copyright office, Geneva, Switzerland

  13. ISO 5351-1:2010 Pulps-Determination of limiting viscosity number in cupriethylenediamine (CED) solution. ISO copyright office, Geneva, Switzerland

  14. Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Mirobiol Biotechnol 72:291–296

    CAS  Article  Google Scholar 

  15. Klemm D, Ahrem H, Kramer F, Fried W, Wippermann J, Kinne RW (2013) Bacterial nanocellulose hydrogels designed as bioartificial medical implants. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophistical multifunctional material. CRC Press, Tokyo and French Group, Boca Raton, London, New York, pp. 175–196

    Google Scholar 

  16. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocellulose: a new family of nature-based material. Angew Chem Int Ed 50:5438–5466

    CAS  Article  Google Scholar 

  17. Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing and applications in advanced fiber composites. Macromol Biosci 14:10–32

    CAS  Article  PubMed  Google Scholar 

  18. Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol 57(5):449–453. doi:10.1007/s00284-008-9228-3

    CAS  Article  PubMed  Google Scholar 

  19. Rani MU, Appaiah KAA (2013) Production of bacterial cellulose by Gluconacetobacter hansenii UAC09, using coffee cherry husk. J Food Sci Technol 50:755–762

    CAS  Article  PubMed  Google Scholar 

  20. Raspor P, Goranovic D (2008) Biotechnological application of acetic acid bacteria. Crit Rev Biotechnol 28:101–124

    CAS  Article  PubMed  Google Scholar 

  21. Sahena IM, Brown RM (2013) Biosynthesis of bacterial cellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophistical multifunctional material, CRC press. Tokyo and French group, Boca Raton, London, New York, pp. 2–18

    Google Scholar 

  22. Semjonovs P, Ruklisha M, Paegle M, Saka M, Treimane R, Patetko A, Linde R (2015) Komagataeibacter rhaeticus P 1463, producer of bacterial cellulose. Patent: EP 15177983.2, EU

  23. Sievers M, Swings J (2005) Family II. Acetobacteraceae. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn, Springer, New York, vol. 2, pp. 41–96

  24. Velasco-Bedran H, Lopez-Isunza F (2007) The unified metabolism of Gluconacetobacter entanii in continuous and batch processes. Proc Biochem 42:1180–1190

    CAS  Article  Google Scholar 

  25. Wesarg F, Heßler N, Kralisch D, Klemm D, Fried W, Müller FA (2010) Structural and mechanical properties of bacterial nanocellulose produced by different Gluconacetobacter strains. Abstract of 239th American Chemical Society National Meeting, March 23–29, San Francisco, CA, USA, Cell-133

  26. Yamada Y, Yukphan P, Vu H, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. Nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404

    CAS  Article  PubMed  Google Scholar 

  27. Zhong C, Zhong GC, Liu M, Zhong XT, Han PP, Jia SR (2013) Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 99:1181–1190. doi:10.1007/s00253-013-4908-8

    Google Scholar 

Download references


We express our gratitude to M. biol. Madara Saka for the unselfish voluntary assistance in this study. This study was financially supported by the ERDF project no. 2014/0034/2DP/ The BCCM/LMG collection is supported by the Federal Public Planning Service - Science Policy, Belgium.

Author information



Corresponding author

Correspondence to Maija Ruklisha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semjonovs, P., Ruklisha, M., Paegle, L. et al. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl Microbiol Biotechnol 101, 1003–1012 (2017).

Download citation


  • Komagataeibacter rhaeticus
  • Bacterial cellulose
  • Productivity
  • Properties