Skip to main content

Advertisement

Log in

Characterization of prophages containing “evolved” Dit/Tal modules in the genome of Lactobacillus casei BL23

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) have many applications in food and industrial fermentations. Prophage induction and generation of new virulent phages is a risk for the dairy industry. We identified three complete prophages (PLE1, PLE2, and PLE3) in the genome of the well-studied probiotic strain Lactobacillus casei BL23. All of them have mosaic architectures with homologous sequences to Streptococcus, Lactococcus, Lactobacillus, and Listeria phages or strains. Using a combination of quantitative real-time PCR, genomics, and proteomics, we showed that PLE2 and PLE3 can be induced—but with different kinetics—in the presence of mitomycin C, although PLE1 remains as a prophage. A structural analysis of the distal tail (Dit) and tail associated lysin (Tal) baseplate proteins of these prophages and other L. casei/paracasei phages and prophages provides evidence that carbohydrate-binding modules (CBM) located within these “evolved” proteins may replace receptor binding proteins (RBPs) present in other well-studied LAB phages. The detailed study of prophage induction in this prototype strain in combination with characterization of the proteins involved in host recognition will facilitate the design of new strategies for avoiding phage propagation in the dairy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Acedo-Felix E, Perez-Martinez G (2003) Significant differences between Lactobacillus casei subsp. casei ATCC 393T and a commonly used plasmid-cured derivative revealed by a polyphasic study. Int J Syst Evol Microbiol 53:67–75. doi:10.1099/ijs.0.02325-0

    Article  CAS  PubMed  Google Scholar 

  • Ai L, Chen C, Zhou F, Wang L, Zhang H, Chen W, Guo B (2011) Complete genome sequence of the probiotic strain Lactobacillus casei BD-II. J Bacteriol 193:3160–3161. doi:10.1128/jb.00421-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/s0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Baugher JL, Durmaz E, Klaenhammer TR (2014) Spontaneously induced prophages in Lactobacillus gasseri contribute to horizontal gene transfer. Appl Environ Microbiol 80:3508–3517. doi:10.1128/aem.04092-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bebeacua C, Bron P, Lai L, Vegge CS, Brondsted L, Spinelli S, Campanacci V, Veesler D, van Heel M, Cambillau C (2010) Structure and molecular assignment of lactococcal phage TP901-1 baseplate. J Biol Chem 285:39079–39086. doi:10.1074/jbc.M110.175646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borodovsky M, McIninch J (1993) Recognition of genes in DNA sequence with ambiguities. Biosystems 30:161–171

    Article  CAS  PubMed  Google Scholar 

  • Bourand A, Yebra MJ, Boel G, Maze A, Deutscher J (2013) Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes. J Bacteriol 195:2652–2661. doi:10.1128/jb.02276-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capra ML, Mercanti DJ, Reinheimer JA, Quiberoni AL (2010) Characterisation of three temperate phages released from the same Lactobacillus paracasei commercial strain. Int J Dairy Technol 63:396–405. doi:10.1111/j.1471-0307.2010.00600.x

    Article  CAS  Google Scholar 

  • Chen C, Ai L, Zhou F, Wang L, Zhang H, Chen W, Guo B (2011) Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W. J Bacteriol 193:3419–3420. doi:10.1128/jb.05017-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diancourt L, Passet V, Chervaux C, Garault P, Smokvina T, Brisse S (2007) Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl Environ Microbiol 73:6601–6611. doi:10.1128/aem.01095-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterle ME, Bowman C, Batthyany C, Lanzarotti E, Turjanski A, Hatfull G, Piuri M (2014a) Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Appl Environ Microbiol 80:7107–7121. doi:10.1128/AEM.02771-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieterle ME, Jacobs-Sera D, Russell D, Hatfull G, Piuri M (2014b) Complete genome sequences of Lactobacillus phages J-1 and PL-1. Genome Announc. doi:10.1128/genomeA.00998-13

    PubMed  PubMed Central  Google Scholar 

  • Douillard FP, Kant R, Ritari J, Paulin L, Palva A, de Vos WM (2013a) Comparative genome analysis of Lactobacillus casei strains isolated from Actimel and Yakult products reveals marked similarities and points to a common origin. Microb Biotechnol 6:576–587. doi:10.1111/1751-7915.12062

    Article  PubMed  PubMed Central  Google Scholar 

  • Douillard FP, Ribbera A, Jarvinen HM, Kant R, Pietila TE, Randazzo C, Paulin L, Laine PK, Caggia C, von Ossowski I, Reunanen J, Satokari R, Salminen S, Palva A, de Vos WM (2013b) Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl Environ Microbiol 79:1923–1933. doi:10.1128/AEM.03467-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douillard FP, Ribbera A, Kant R, Pietila TE, Jarvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, Caggia C, Lahteinen T, Brouns SJ, Satokari R, von Ossowski I, Reunanen J, Palva A, de Vos WM (2013c) Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 9:e1003683. doi:10.1371/journal.pgen.1003683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durmaz E, Klaenhammer TR (2000) Genetic analysis of chromosomal regions of Lactococcus lactis acquired by recombinant lytic phages. Appl Environ Microbiol 66:895–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durmaz E, Miller MJ, Azcarate-Peril MA, Toon SP, Klaenhammer TR (2008) Genome sequence and characteristics of Lrm1, a prophage from industrial Lactobacillus rhamnosus strain M1. Appl Environ Microbiol 74:4601–4609. doi:10.1128/AEM.00010-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echols H (1972) Developmental pathways for the temperate phage: lysis vs lysogeny. Annu Rev Genet 6:157–190. doi:10.1146/annurev.ge.06.120172.001105

    Article  CAS  PubMed  Google Scholar 

  • Flayhan A, Vellieux FM, Lurz R, Maury O, Contreras-Martel C, Girard E, Boulanger P, Breyton C (2014) Crystal structure of pb9, the distal tail protein of bacteriophage T5: a conserved structural motif among all siphophages. J Virol 88:820–828. doi:10.1128/JVI.02135-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia P, Ladero V, Suarez JE (2003) Analysis of the morphogenetic cluster and genome of the temperate Lactobacillus casei bacteriophage A2. Arch Virol 148:1051–1070. doi:10.1007/s00705-003-0008-x

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Doval C, Caston JR, Luque D, Granell M, Otero JM, Llamas-Saiz AL, Renouard M, Boulanger P, van Raaij MJ (2015) Structure of the receptor-binding carboxy-terminal domain of the bacteriophage T5 L-shaped tail fibre with and without its intra-molecular chaperone. Viruses 7:6424–6440. doi:10.3390/v7122946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garneau JE, Moineau S (2011) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10 Suppl 1:S20. doi:10.1186/1475-2859-10-S1-S20

  • Gordon D (2003) Viewing and editing assembled sequences using Consed. Curr Protoc Bioinformatics Chapter 11:Unit11.12. doi:10.1002/0471250953.bi1102s02

  • Hino MIN (1965) Lactic acid bacteria employed for beverage production. II. Isolation and some properties of a bacteriophage isolated during the fermentation of lactic acid beverage. J Chem Soc Japan 39:472–476

    CAS  Google Scholar 

  • Hochwind K, Weinmaier T, Schmid M, van Hemert S, Hartmann A, Rattei T, Rothballer M (2012) Draft genome sequence of Lactobacillus casei W56. J Bacteriol 194:6638. doi:10.1128/jb.01386-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossmann MG (2002) Structure of the cell-puncturing device of bacteriophage T4. Nature 415:553–557. doi:10.1038/415553a

    Article  CAS  PubMed  Google Scholar 

  • Kondou Y, Kitazawa D, Takeda S, Tsuchiya Y, Yamashita E, Mizuguchi M, Kawano K, Tsukihara T (2005) Structure of the central hub of bacteriophage Mu baseplate determined by X-ray crystallography of gp44. J Mol Biol 352:976–985. doi:10.1016/j.jmb.2005.07.044

    Article  CAS  PubMed  Google Scholar 

  • Laslett D, Canbäck B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. doi:10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo TC, Shih TC, Lin CF, Chen HW, Lin TH (2005) Complete genomic sequence of the temperate bacteriophage PhiAT3 isolated from Lactobacillus casei ATCC 393. Virology 339:42-55. doi:10.1016/j.virol.2005.05.022

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunde M, Blatny JM, Kaper F, Nes IF, Lillehaug D (2000) The life cycles of the temperate lactococcal bacteriophage phiLC3 monitored by a quantitative. PCR method FEMS Microbiol Lett 192:119–124

    CAS  PubMed  Google Scholar 

  • Lunde M, Blatny JM, Lillehaug D, Aastveit AH, Nes IF (2003) Use of real-time quantitative PCR for the analysis of LC3 prophage stability in Lactococci. App Environ Microbiol 69:41–48. doi:10.1128/aem.69.1.41-48.2003

    Article  CAS  Google Scholar 

  • Maldonado Galdeano C, Novotny Nunez I, Carmuega E, de Moreno de LeBlanc A, Perdigon G (2015) Role of probiotics and functional foods in health: gut immune stimulation by two probiotic strains and a potential probiotic yoghurt. Endocr Metab Immune Disord Drug Targets 15:37–45

    Article  PubMed  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331. doi:10.1093/nar/gkh454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maze A, Boel G, Zuniga M, Bourand A, Loux V, Yebra MJ, Monedero V, Correia K, Jacques N, Beaufils S, Poncet S, Joyet P, Milohanic E, Casaregola S, Auffray Y, Perez-Martinez G, Gibrat JF, Zagorec M, Francke C, Hartke A, Deutscher J (2010) Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol 192:2647–2648. doi:10.1128/jb.00076-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarland LV (2015) From yaks to yogurt: the history, development, and current use of probiotics. Clin Infect Dis 60(Suppl 2):S85–S90. doi:10.1093/cid/civ054

    Article  PubMed  Google Scholar 

  • Mercanti DJ, Carminati D, Reinheimer JA, Quiberoni A (2011) Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int J Food Microbiol 144:503–510. doi:10.1016/j.ijfoodmicro.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  • Mercanti DJ, Rousseau GM, Capra ML, Quiberoni A, Tremblay DM, Labrie SJ, Moineau S (2015) Genomic diversity of phages infecting probiotic strains of Lactobacillus paracasei. Appl Environ Microbiol 82:95–105. doi:10.1128/aem.02723-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Moineau S, Pandian S, Klaenhammer TR (1995) Specific chromosomal sequences can contribute to the appearance of a new lytic bacteriophage in Lactococcus. Dev Biol Stand 85:577–580

    CAS  PubMed  Google Scholar 

  • Munoz-Provencio D, Rodriguez-Diaz J, Collado MC, Langella P, Bermudez-Humaran LG, Monedero V (2012) Functional analysis of the Lactobacillus casei BL23 sortases. Appl Environ Microbiol 78:8684–8693. doi:10.1128/aem.02287-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873. doi:10.1016/j.cell.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  • Piuri M, Sanchez-Rivas C, Ruzal SM (2003) Adaptation to high salt in Lactobacillus: role of peptides and proteolytic enzymes. J Appl Microbiol 95:372–379

    Article  CAS  PubMed  Google Scholar 

  • Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104:15508–15513. doi:10.1073/pnas.0706532104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich L, Sigal N, Borovok I, Nir-Paz R, Herskovits AA (2012) Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 150:792–802. doi:10.1016/j.cell.2012.06.036

    Article  CAS  PubMed  Google Scholar 

  • Raya RR, H’Bert EM (2009) Isolation of phage via induction of lysogens. Methods Mol Biol 501:23–32. doi:10.1007/978-1-60327-164-6_3

    Article  CAS  PubMed  Google Scholar 

  • Raya RR, Klaenhammer TR (1992) High-frequency plasmid transduction by Lactobacillus gasseri bacteriophage phiadh. Appl Environ Microbiol 58:187–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revilla-Guarinos A, Gebhard S, Alcantara C, Staron A, Mascher T, Zuniga M (2013) Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23. Appl Environ Microbiol 79:3160–3170. doi:10.1128/aem.00178-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochat T, Bermudez-Humaran L, Gratadoux JJ, Fourage C, Hoebler C, Corthier G, Langella P (2007) Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice. Microb Cell Fact 6:22. doi:10.1186/1475-2859-6-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez I, Garcia P, Suarez JE (2005) A second case of -1 ribosomal frameshifting affecting a major virion protein of the Lactobacillus bacteriophage A2. J Bacteriol 187:8201–8204. doi:10.1128/JB.187.23.8201-8204.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggirello M, Dolci P, Cocolin L (2014) Detection and viability of Lactococcus lactis throughout cheese ripening. PLoS One 9:e114280. doi:10.1371/journal.pone.0114280

    Article  PubMed  PubMed Central  Google Scholar 

  • Sciara G, Bebeacua C, Bron P, Tremblay D, Ortiz-Lombardia M, Lichiere J, van Heel M, Campanacci V, Moineau S, Cambillau C (2010) Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc Natl Acad Sci U S A 107:6852–6857. doi:10.1073/pnas.1000232107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seegers JF, Mc Grath S, O’Connell-Motherway M, Arendt EK, van de Guchte M, Creaven M, Fitzgerald GF, van Sinderen D (2004) Molecular and transcriptional analysis of the temperate lactococcal bacteriophage Tuc 2009. Virology 329:40–52. doi:10.1016/j.virol.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  • Smid EJ, Erkus O, Spus M, Wolkers-Rooijackers JC, Alexeeva S, Kleerebezem M (2014) Functional implications of the microbial community structure of undefined mesophilic starter cultures. Microb Cell Fact 13 Suppl 1:S2. doi:10.1186/1475-2859-13-s1-s2

  • Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. doi:10.1093/nar/gki408

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610. doi:10.1101/gr.403602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuohimaa A, Riipinen KA, Brandt K, Alatossava T (2006) The genome of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus, and comparative genomics with Lactobacillus casei phages. Arch Virol 151:947–965. doi:10.1007/s00705-005-0672-0

    Article  CAS  PubMed  Google Scholar 

  • Veesler D, Cambillau C (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75:423-433, first page of table of contents. doi:10.1128/MMBR.00014-11

  • Veesler D, Robin G, Lichiere J, Auzat I, Tavares P, Bron P, Campanacci V, Cambillau C (2010) Crystal structure of bacteriophage SPP1 distal tail protein (gp19.1): a baseplate hub paradigm in gram-positive infecting phages. J Biol Chem 285:36666–36673. doi:10.1074/jbc.M110.157529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veesler D, Spinelli S, Mahony J, Lichiere J, Blangy S, Bricogne G, Legrand P, Ortiz-Lombardia M, Campanacci V, van Sinderen D, Cambillau C (2012) Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Proc Natl Acad Sci U S A 109:8954–8958. doi:10.1073/pnas.1200966109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura M, Canchaya C, Bernini V, Altermann E, Barrangou R, McGrath S, Claesson MJ, Li Y, Leahy S, Walker CD, Zink R, Neviani E, Steele J, Broadbent J, Klaenhammer TR, Fitzgerald GF, O’Toole PW, van Sinderen D (2006) Comparative genomics and transcriptional analysis of prophages identified in the genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Appl Environ Microbiol 72:3130–3146. doi:10.1128/AEM.72.5.3130-3146.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verreault D, Moineau S, Duchaine C (2008) Methods for sampling of airborne viruses. Microbiol Mol Biol Rev 72:413–444. doi:10.1128/mmbr.00002-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villion M, Moineau S (2009) Bacteriophages of Lactobacillus. Front Biosci 14:1661–1683

    Article  CAS  Google Scholar 

  • Watanabe K, Takesue S, Jin-Nai K, Yoshikawa T (1970) Bacteriophage active against the lactic acid beverage-producing bacterium Lactobacillus casei. Appl Microbiol 20:409–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21. doi:10.1016/j.molcel.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. doi:10.1093/nar/gkr485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Raul Raya from CERELA for testing of induced prophages in different Lactobacillus spp. strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Piuri.

Ethics declarations

Funding

This work was partially supported by UBACYT 2014-2017 GC 20020130100444BA to MP. M.E.D. is a doctoral fellow of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET, Argentina).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 22.5 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieterle, M.E., Fina Martin, J., Durán, R. et al. Characterization of prophages containing “evolved” Dit/Tal modules in the genome of Lactobacillus casei BL23. Appl Microbiol Biotechnol 100, 9201–9215 (2016). https://doi.org/10.1007/s00253-016-7727-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7727-x

Keywords

Profiles

  1. Rosario Durán