Applied Microbiology and Biotechnology

, Volume 100, Issue 21, pp 9175–9186 | Cite as

Generation of new compounds through unbalanced transcription of landomycin A cluster

  • Maksym Myronovskyi
  • Elke Brötz
  • Birgit Rosenkränzer
  • Niko Manderscheid
  • Bogdan Tokovenko
  • Yuriy Rebets
  • Andriy LuzhetskyyEmail author
Applied genetics and molecular biotechnology


The biosynthetically well-studied landomycin A cluster has been used to demonstrate the unbalancing of gene transcription as an efficient method for the generation of new compounds. Landomycin A structural genes were decoupled from the native regulators LanI and LanK and placed under the control of a single synthetic promoter and expressed in a heterologous host Streptomyces albus J1074. In contrast to their native quantitative and temporal regulation, these genes were transcribed as a single polycistronic mRNA leading to the production of four novel and two known compounds. No glycosylated landomycins were detected though the entire biosynthetic cluster was transcribed, showing the crucial role of the balanced gene expression for the production of landomycin A. Two new compounds, fridamycin F and G, isolated in this study were shown to originate from the interplay between the expressed biosynthetic pathway and metabolic network of the heterologous host. Structure activity studies of the isolated compounds as well as results of transcriptome sequencing are discussed in this article.


Landomycin A Angucyclines Transcriptional unbalancing Natural product discovery Synthetic promoters Streptomyces albus 



Authors are very grateful to Dr. Jennifer Herrmann and Prof. Rolf Müller from Helmholtz Institute of Pharmaceutical Sciences Saarland (Saarbrücken, Germany) for the help with performing MIC assay.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


This work was supported by the European Commission under the 7th Framework Programme through the “Collaborative Project” action, “STREPSYNTH” grant no. 613877 and through the ERC starting grant EXPLOGEN No. 281623 to AL.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2016_7721_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1636 kb)


  1. Agnew DE, Pfleger BF (2011) Optimization of synthetic operons using libraries of post-transcriptional regulatory elements. Methods Mol Biol Clifton NJ 765:99–111CrossRefGoogle Scholar
  2. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol FG B 48:15–22CrossRefPubMedGoogle Scholar
  4. Braña AF, Rodríguez M, Pahari P, Rohr J, García LA, Blanco G (2014) Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya. Arch Microbiol 196:345–355CrossRefPubMedGoogle Scholar
  5. Brown DG, Lister T, May-Dracka TL (2014) New natural products as new leads for antibacterial drug discovery. Bioorg Med Chem Lett 24:413–418CrossRefPubMedGoogle Scholar
  6. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569CrossRefPubMedGoogle Scholar
  7. Chater KF, Wilde LC (1976) Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI. J Bacteriol 128:644–650PubMedPubMedCentralGoogle Scholar
  8. Chen L-H, Yang SL, Chung K-R (2014) Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata. Microbiology 160:970–979CrossRefPubMedGoogle Scholar
  9. Danishefsky S, Uang BJ, Quallich G (1985) Total synthesis of vineomycinone B2 methyl ester. J Am Chem Soc 107:1285–1293CrossRefGoogle Scholar
  10. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62:5–16CrossRefGoogle Scholar
  11. Eisendle M, Schrettl M, Kragl C, Müller D, Illmer P, Haas H (2006) The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell 5:1596–1603CrossRefPubMedPubMedCentralGoogle Scholar
  12. Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389CrossRefPubMedGoogle Scholar
  13. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  14. Gross H (2009) Genomic mining - a concept for the discovery of new bioactive natural products. Curr Opin Drug Discov Devel 12:207–219PubMedGoogle Scholar
  15. Guo F, Xiang S, Li L, Wang B, Rajasärkkä J, Gröndahl-Yli-Hannuksela K, Ai G, Metsä-Ketelä M, Yang K (2015) Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. Metab Eng 28:134–142CrossRefPubMedGoogle Scholar
  16. Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF (2004) Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128CrossRefPubMedGoogle Scholar
  17. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129CrossRefPubMedGoogle Scholar
  18. Hackl S, Bechthold A (2015) The gene bldA, a regulator of morphological differentiation and antibiotic production in streptomyces. Arch Pharm (Weinheim) 348:455–462CrossRefGoogle Scholar
  19. Jansen R, Sood S, Huch V, Kunze B, Stadler M, Müller R (2014) Pyrronazols, metabolites from the myxobacteria Nannocystis pusilla and N. exedens, are unusual chlorinated pyrone-oxazole-pyrroles. J Nat Prod 77:320–326CrossRefPubMedGoogle Scholar
  20. Jones JA, Toparlak ÖD, Koffas MAG (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52–59CrossRefPubMedGoogle Scholar
  21. Kharel MK, Pahari P, Lian H, Rohr J (2010) Enzymatic total synthesis of rabelomycin, an angucycline group antibiotic. Org Lett 12:2814–2817CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kharel MK, Pahari P, Shaaban KA, Wang G, Morris C, Rohr J (2012a) Elucidation of post-PKS tailoring steps involved in landomycin biosynthesis. Org Biomol Chem 10:4256–4265CrossRefPubMedGoogle Scholar
  23. Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J (2012b) Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep 29:264–325CrossRefPubMedGoogle Scholar
  24. Kharel MK, Rohr J (2012) Delineation of gilvocarcin, jadomycin, and landomycin pathways through combinatorial biosynthetic enzymology. Curr Opin Chem BiolGoogle Scholar
  25. Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical streptomyces genetics. John Innes FoundationGoogle Scholar
  26. Kim KM, Kim YS, Jung DH, Lee J, Kim JS (2012) Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Exp Cell Res 318:152–159CrossRefPubMedGoogle Scholar
  27. Krohn K, Baltus W (1988) Synthesis of rac- and ent-fridamycin E. Tetrahedron 44:49–54CrossRefGoogle Scholar
  28. Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci U S A 108:6258–6263CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu WC, Parker L, Slusarchyk S, Greenwood GL, Grahm SF, Meyers E (1970) Isolation, characterization, and structure of rabelomycin, a new antibiotic. J Antibiot (Tokyo) 23:437–441CrossRefGoogle Scholar
  30. Luo Y, Cobb RE, Zhao H (2014) Recent advances in natural product discovery. Curr Opin Biotechnol 30:230–237CrossRefPubMedGoogle Scholar
  31. Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z, Cobb RE, Zhao H (2013) Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 4:2894PubMedPubMedCentralGoogle Scholar
  32. Luzhetskyy A, Liu T, Fedoryshyn M, Ostash B, Fedorenko V, Rohr J, Bechthold A (2004) Function of lanGT3, a glycosyltransferase gene involved in landomycin a biosynthesis. Chembiochem Eur J Chem Biol 5:1567–1570CrossRefGoogle Scholar
  33. Luzhetskyy A, Zhu L, Gibson M, Fedoryshyn M, Dürr C, Hofmann C, Hoffmeister D, Ostash B, Mattingly C, Adams V, Fedorenko V, Rohr J, Bechthold A (2005) Generation of novel landomycins M and O through targeted gene disruption. Chembiochem Eur J Chem Biol 6:675–678CrossRefGoogle Scholar
  34. Maskey RP, Helmke E, Laatsch H (2003) Himalomycin A and B: isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J Antibiot (Tokyo) 56:942–949CrossRefGoogle Scholar
  35. Mazodier P, Petter R, Thompson C (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585PubMedPubMedCentralGoogle Scholar
  36. Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC, Cruz-Morales P, Duddela S, Düsterhus S, Edwards DJ, Fewer DP, Garg N, Geiger C, Gomez-Escribano JP, Greule A, Hadjithomas M, Haines AS, Helfrich EJN, Hillwig ML, Ishida K, Jones AC, Jones CS, Jungmann K, Kegler C, Kim HU, Kötter P, Krug D, Masschelein J, Melnik AV, Mantovani SM, Monroe EA, Moore M, Moss N, Nützmann H-W, Pan G, Pati A, Petras D, Reen FJ, Rosconi F, Rui Z, Tian Z, Tobias NJ, Tsunematsu Y, Wiemann P, Wyckoff E, Yan X, Yim G, Yu F, Xie Y, Aigle B, Apel AK, Balibar CJ, Balskus EP, Barona-Gómez F, Bechthold A, Bode HB, Borriss R, Brady SF, Brakhage AA, Caffrey P, Cheng Y-Q, Clardy J, Cox RJ, De Mot R, Donadio S, Donia MS, van der Donk WA, Dorrestein PC, Doyle S, Driessen AJM, Ehling-Schulz M, Entian K-D, Fischbach MA, Gerwick L, Gerwick WH, Gross H, Gust B, Hertweck C, Höfte M, Jensen SE, Ju J, Katz L, Kaysser L, Klassen JL, Keller NP, Kormanec J, Kuipers OP, Kuzuyama T, Kyrpides NC, Kwon H-J, Lautru S, Lavigne R, Lee CY, Linquan B, Liu X, Liu W, Luzhetskyy A, Mahmud T, Mast Y, Méndez C, Metsä-Ketelä M, Micklefield J, Mitchell DA, Moore BS, Moreira LM, Müller R, Neilan BA, Nett M, Nielsen J, O’Gara F, Oikawa H, Osbourn A, Osburne MS, Ostash B, Payne SM, Pernodet J-L, Petricek M, Piel J, Ploux O, Raaijmakers JM, Salas JA, Schmitt EK, Scott B, Seipke RF, Shen B, Sherman DH, Sivonen K, Smanski MJ, Sosio M, Stegmann E, Süssmuth RD, Tahlan K, Thomas CM, Tang Y, Truman AW, Viaud M, Walton JD, Walsh CT, Weber T, van Wezel GP, Wilkinson B, Willey JM, Wohlleben W, Wright GD, Ziemert N, Zhang C, Zotchev SB, Breitling R, Takano E, Glöckner FO (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11:625–631CrossRefPubMedGoogle Scholar
  37. Metsä-Ketelä M, Ylihonko K, Mäntsälä P (2004) Partial activation of a silent angucycline-type gene cluster from a rubromycin beta producing Streptomyces sp. PGA64. J Antibiot (Tokyo) 57:502–510CrossRefGoogle Scholar
  38. Montiel D, Kang H-S, Chang F-Y, Charlop-Powers Z, Brady SF (2015) Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters. Proc Natl Acad Sci U S A 112:8953–8958CrossRefPubMedPubMedCentralGoogle Scholar
  39. Myronovskyi M, Rosenkränzer B, Luzhetskyy A (2014) Iterative marker excision system. Appl Microbiol Biotechnol 98:4557–4570CrossRefPubMedGoogle Scholar
  40. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98CrossRefPubMedGoogle Scholar
  41. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060CrossRefPubMedPubMedCentralGoogle Scholar
  42. Okami Y, Hotta K (1988) 2 - Search and discovery of new antibiotics. In: Mordarski MGTW (ed) Actinomycetes in biotechnology. Academic Press, London, pp. 33–67CrossRefGoogle Scholar
  43. Olano C, García I, González A, Rodriguez M, Rozas D, Rubio J, Sánchez-Hidalgo M, Braña AF, Méndez C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7:242–256CrossRefPubMedPubMedCentralGoogle Scholar
  44. Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ostash B, Ostash I, Zhu L, Kharel MK, Luzhetskiĭ A, Bechthold A, Walker S, Rohr J, Fedorenko V (2010) Properties of lanK-based regulatory circuit involved in landomycin biosynthesis in Streptomyces cyanogenus S136. Genetika 46:604–609PubMedPubMedCentralGoogle Scholar
  46. Ostash I, Ostash B, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V (2008) Coordination of export and glycosylation of landomycins in Streptomyces cyanogenus S136. FEMS Microbiol Lett 285:195–202CrossRefPubMedGoogle Scholar
  47. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032CrossRefPubMedGoogle Scholar
  48. Rebets Y, Dutko L, Ostash B, Luzhetskyy A, Kulachkovskyy O, Yamaguchi T, Nakamura T, Bechthold A, Fedorenko V (2008) Function of lanI in regulation of landomycin a biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Arch Microbiol 189:111–120CrossRefPubMedGoogle Scholar
  49. Rebets Y, Ostash B, Luzhetskyy A, Hoffmeister D, Brana A, Mendez C, Salas JA, Bechthold A, Fedorenko V (2003) Production of landomycins in Streptomyces globisporus 1912 and S cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 222:149–153CrossRefPubMedGoogle Scholar
  50. Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523CrossRefPubMedGoogle Scholar
  51. Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle M-J (2011) The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 90:615–623CrossRefPubMedGoogle Scholar
  52. Shaaban KA, Stamatkin C, Damodaran C, Rohr J (2011) 11-Deoxylandomycinone and landomycins X-Z, new cytotoxic angucyclin(on)es from a Streptomyces cyanogenus K62 mutant strain. J Antibiot (Tokyo) 64:141–150CrossRefGoogle Scholar
  53. Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106CrossRefPubMedGoogle Scholar
  54. Spohn M, Kirchner N, Kulik A, Jochim A, Wolf F, Muenzer P, Borst O, Gross H, Wohlleben W, Stegmann E (2014) Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Antimicrob Agents Chemother 58:6185–6196CrossRefPubMedPubMedCentralGoogle Scholar
  55. Trefzer A, Fischer C, Stockert S, Westrich L, Künzel E, Girreser U, Rohr J, Bechthold A (2001) Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. Chem Biol 8:1239–1252CrossRefPubMedGoogle Scholar
  56. von Mulert U, Luzhetskyy A, Hofmann C, Mayer A, Bechthold A (2004) Expression of the landomycin biosynthetic gene cluster in a PKS mutant of Streptomyces fradiae is dependent on the coexpression of a putative transcriptional activator gene. FEMS Microbiol Lett 230:91–97CrossRefGoogle Scholar
  57. Westrich L, Domann S, Faust B, Bedford D, Hopwood DA, Bechthold A (1999) Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett 170:381–387CrossRefPubMedGoogle Scholar
  58. Zhou Z, Xu Q, Bu Q, Guo Y, Liu S, Liu Y, Du Y, Li Y (2015) Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis. Chembiochem Eur J Chem Biol 16:496–502CrossRefGoogle Scholar
  59. Zhu L, Luzhetskyy A, Luzhetska M, Mattingly C, Adams V, Bechthold A, Rohr J (2007) Generation of new landomycins with altered saccharide patterns through over-expression of the glycosyltransferase gene lanGT3 in the biosynthetic gene cluster of landomycin a in Streptomyces cyanogenus S-136. Chembiochem Eur J Chem Biol 8:83–88CrossRefGoogle Scholar
  60. Zhu L, Ostash B, Rix U, Nur-E-Alam M, Mayers A, Luzhetskyy A, Mendez C, Salas JA, Bechthold A, Fedorenko V, Rohr J (2005) Identification of the function of gene lndM2 encoding a bifunctional oxygenase-reductase involved in the biosynthesis of the antitumor antibiotic landomycin E by Streptomyces globisporus 1912 supports the originally assigned structure for landomycinone. J Organomet Chem 70:631–638CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maksym Myronovskyi
    • 1
  • Elke Brötz
    • 1
  • Birgit Rosenkränzer
    • 1
  • Niko Manderscheid
    • 1
  • Bogdan Tokovenko
    • 1
  • Yuriy Rebets
    • 1
  • Andriy Luzhetskyy
    • 1
    • 2
    Email author
  1. 1.Helmholtz-Institute for Pharmaceutical Research SaarlandSaarland University CampusSaarbrückenGermany
  2. 2.Department of Pharmaceutical Biotechnology, Helmholtz-Institute for Pharmaceutical Research Saarland, Actinobacteria Metabolic Engineering GroupSaarland UniversitySaarbrückenGermany

Personalised recommendations