Skip to main content

Histone-dependent IgG conservation in octanoic acid precipitation and its mechanism

Abstract

Octanoic acid (OA) precipitation has long been used in protein purification. Recently, we reported a new cell culture clarification method for immunoglobulin G (IgG) purification, employing an advance elimination of chromatin heteroaggregates with a hybrid OA-solid phase system. This treatment reduced DNA more than 3 logs, histone below the detection limit (LOD), and non-histone host cell proteins (nh-HCP) by 90 % while conserving more than 90 % of the IgG monomer. In this study, we further investigated the conservation of IgG monomer and antibody light chain (LC) to the addition of OA/OA-solid phase complex, with or without histone and DNA in different combinations. The results showed that highly basic histone protein was the prime target in OA/OA-solid phase precipitation system for IgG purification, and the selective conservation of IgG monomer in this system was histone dependent. Our findings partially support the idea that OA works by sticking to electropositive hydrophobic domains on proteins, reducing their solubility, and causing them to agglomerate into large particles that precipitate from solution. Our findings also provide a new perspective for IgG purification and emphasize the necessity to re-examine the roles of various host contaminants in IgG purification.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bhoskar P, Belongia B, Smith R, Yoon S, Carter T, Jin X (2013) Free light chain content in culture media reflects recombinant monoclonal antibody productivity and quality. Biotechnol Prog 29:1131–1139. doi:10.1002/btpr.1767

    CAS  Article  PubMed  Google Scholar 

  2. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685. doi:10.1016/j.addr.2005.12.006

    CAS  Article  PubMed  Google Scholar 

  3. Brodsky Y, Zhang C, Yigzaw Y, Vedantham G (2012) Caprylic acid precipitation method for impurity reduction: an alternative to conventional chromatography for monoclonal antibody purification. Biotechnol Bioeng 109:2589–2598. doi:10.1002/bit.24539

    CAS  Article  PubMed  Google Scholar 

  4. Budavari S, O’Neil MJ, Smith A, Heckelman PE, Kinneary JF (1996) The Merck index: an encyclopedia of chemicals, drugs, and biologicals (12th ed.) Merck & Co. ISBN 0911910123

  5. Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG (2009) A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng 102:1182–1196. doi:10.1002/bit.22158

    CAS  Article  PubMed  Google Scholar 

  6. Gagnon P, Nian R, Lee J, Tan L, Abdul Latiff SM, Lim CL, Chuah C, Yang YS, Gan HT (2014a) Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance. J Chromatogr A 1340:68–78. doi:10.1016/j.chroma.2014.03.010

    CAS  Article  PubMed  Google Scholar 

  7. Gagnon P, Nian R, Tan L, Cheong J, Yeo V, Yang YS, Gan HT (2014b) Chromatin-mediated depression of fractionation performance on electronegative multimodal chromatography media, its prevention, and ramifications for purification of immunoglobulin G. J Chromatogr A 1374:145–155. doi:10.1016/j.chroma.2014.11.052

    CAS  Article  PubMed  Google Scholar 

  8. Gagnon P, Nian R, Yang YS, Yang Q, Lim CL (2015) Non-immunospecific association of immunoglobulin G with chromatin during elution from protein a inflates host contamination, aggregate content, and antibody loss. J Chromatogr A 1408:151–160. doi:10.1016/j.chroma.2015.07.017

    CAS  Article  PubMed  Google Scholar 

  9. Gao QS, Sun M, Tyutyulkova S, Webster D, Rees A, Tramontano A, Massey RJ, Paul S (1994) Molecular cloning of a proteolytic antibody light chain. J Biol Chem 269:32389–32393

    CAS  PubMed  Google Scholar 

  10. Georgel PT, Hansen JC (2001) Linker histone function in chromatin: dual mechanisms of action. Biochem Cell Biol 79:313–316. doi:10.1139/o01-080

    CAS  Article  PubMed  Google Scholar 

  11. Haasa J, Fettinga F, Plogb C, Kerfinb W, Gerhardb W, Rothb G (2006) Recognition and classification of histones using support vector machine. J Comput Biol 13:102–112. doi:10.1089/cmb.2006.13.102

    Article  Google Scholar 

  12. Hamilton RG (1990) 5—Production and epitope location of monoclonal antibodies to the human IgG subclasses. The Human IgG Subclasses 33:79–91. doi:10.1016/B978-0-08-037504-5.50010-7

    Article  Google Scholar 

  13. Herzer S, Bhangale A, Barker G, Chowdhary I, Conover M, O’Mara BW, Tsang L, Wang SY, Krystek SR Jr, Yao Y, Rieble S (2015) Development and scale-up of the recovery and purification of a domain antibody fc fusion protein-comparison of a two and three-step approach. Biotechnol Bioeng 112:1417–1428. doi:10.1002/bit.25561

    CAS  Article  PubMed  Google Scholar 

  14. Ho SCL, Muriel B, Feng H, Mariati, Song Z, Yap MGS, Yang Y (2012) IRES-mediated tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. J Biotechnol 157:130–139. doi:10.1016/j.jbiotec.2011.09.023

    CAS  Article  PubMed  Google Scholar 

  15. Hoch H, Chanutin A (1954) Albumin from heated human plasma. I. Preparation and electrophoretic properties. Arch Biochem Biophys 51:271–276

    CAS  Article  PubMed  Google Scholar 

  16. Lide DR (1990) CRC handbook of chemistry and physics (70th Ed.). CRC Press, Boca Raton (FL)

    Google Scholar 

  17. Morais V, Massaldi H (2012) A model mechanism for protein precipitation by caprylic acid: application to plasma purification. Biotechnol Appl Biochem 59:50–54. doi:10.1002/bab.68

    CAS  Article  PubMed  Google Scholar 

  18. Nian R, Chuah C, Lee J, Gan HT, Latiff SM, Lee WY, Vagenende V, Yang YS, Gagnon P (2013) Void exclusion of antibodies by grafted-ligand porous particle anion exchangers. J Chromatogr A 1282:127–132. doi:10.1016/j.chroma.2013.01.065

    CAS  Article  PubMed  Google Scholar 

  19. Nian R, Zhang W, Tan L, Lee J, Bi X, Yang Y, Gan HT, Gagnon P (2015) Advance chromatin extraction improves capture performance of protein a affinity chromatography. J Chromatogr A 1431:1–7. doi:10.1016/j.chroma.2015.12.044

    Article  CAS  PubMed  Google Scholar 

  20. Open drug and drug target database. (2005) http://www.drugbank.ca/drugs/DB00072

  21. Russo C, Callegaro L, Lanza E, Ferrone S (1983) Purification of IgG monoclonal antibody by caprylic acid precipitation. J Immunol Methods 65:269–271. doi:10.1016/0022-1759(83)90324-1

    CAS  Article  PubMed  Google Scholar 

  22. Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21:122–133. doi:10.1021/bp049780w

    CAS  Article  PubMed  Google Scholar 

  23. Singh N, Arunkumar A, Chollangi S, Tan Z, Borys M, Zheng JL (2016) Clarification technologies for monoclonal antibody manufacturing processes: current state and future perspectives. Biotechnol Bioeng 113:698–716. doi:10.1002/bit.25810

    CAS  Article  PubMed  Google Scholar 

  24. Sneekes EJ, Han J, Elliot M, Ausio J, Swart R, Heck AJR, Borchers C (2009) Accurate molecular weight analysis of histones using FFE and RP-HPLC on monolithic capillary columns. J Sep Sci 32:2691–2698. doi:10.1002/jssc.200800627

    CAS  Article  PubMed  Google Scholar 

  25. Steinbuch M, Audran R (1969) The isolation of IgG from mammalian sera with the aid of caprylic acid. Arch Biochem Biophys 134:279–284. doi:10.1016/0003-9861(69)90285-9

    CAS  Article  PubMed  Google Scholar 

  26. Temponi M, Kageshita T, Perosa F, Ono R, Okada H, Ferrone S (1989) Purification of murine IgG monoclonal antibodies by precipitation with caprylic acid: comparison with other methods of purification. Hybridoma 8:85–95. doi:10.1089/hyb.1989.8.85

    CAS  Article  PubMed  Google Scholar 

  27. Zheng J, Wang L, Twarowska B, Laino S, Sparks C, Smith T, Russell R, Wang M (2015) Caprylic acid-induced impurity precipitation from protein a capture column elution pool to enable a two chromatography step process for monoclonal antibody purification. Biotechnol Prog 259:1515–1525. doi:10.1002/btpr.2154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by QIBEBT (Qingdao Institute of Bioenergy and Bioprocess Technology) Start-up Fund (No. Y571061905) and also by the Biomedical Research Council of A*STAR and Exploit Technologies Pte Ltd., of Singapore (No. ETPL/12-R15GAP-0009).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rui Nian or Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Toh, P., Sun, Y. et al. Histone-dependent IgG conservation in octanoic acid precipitation and its mechanism. Appl Microbiol Biotechnol 100, 9933–9941 (2016). https://doi.org/10.1007/s00253-016-7719-x

Download citation

Keywords

  • Octanoic acid
  • Agglomeration
  • Histone
  • IgG
  • Light chain