Skip to main content
Log in

A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Moenomycins are phosphoglycolipid antibiotics notable for their extreme potency, unique mode of action, and proven record of use in animal nutrition without selection for resistant microflora. There is a keen interest in manipulation of structures of moenomycins in order to better understand their structure-activity relationships and to generate improved analogs. Only two almost identical moenomycin biosynthetic gene clusters are known, limiting our knowledge of the evolution of moenomycin pathways and our ability to genetically diversify them. Here, we report a novel gene cluster (tchm) that directs production of the phosphoglycolipid teichomycin in Actinoplanes teichomyceticus. Its overall genetic architecture is significantly different from that of the moenomycin biosynthesis (moe) gene clusters of Streptomyces ghanaensis and Streptomyces clavuligerus, featuring multiple gene rearrangements and two novel structural genes. Involvement of the tchm cluster in teichomycin biosynthesis was confirmed via heterologous co-expression of amidotransferase tchmH5 and moe genes. Our work sets the background for further engineering of moenomycins and for deeper inquiries into the evolution of this fascinating biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi M, Zhang Y, Leimkuhler C, Sun B, JV LT, DE K (2006) Degradation and reconstruction of moenomycin A and derivatives: dissecting the function of the isoprenoid chain. J Am Chem Soc 128(43):14012–14023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardone MR, Paternoster M, Coronelli C (1978) Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. II. Extraction and chemical characterization. J Antibiot (Tokyo) 31(3):170–177

    Article  CAS  Google Scholar 

  • Borghi A, Coronelli C, Faniuolo L, Allievi G, Pallanza R, Gallo GG (1984) Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. IV. Separation and characterization of the components of teichomycin (teicoplanin). J Antibiot (Tokyo) 37(6):615–620

    Article  CAS  Google Scholar 

  • Chandra G, Chater KF (2008) Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA. Antonie Van Leeuwenhoek 94(1):111–126

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Chandra GJ (2008) The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in streptomyces. Microbiol 46(1):1–11

    CAS  Google Scholar 

  • Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the twenty-first century. Perspect Medicin Chem 6:25–64

    PubMed  PubMed Central  Google Scholar 

  • Gampe CM, Tsukamoto H, Wang TS, Walker S, Kahne D (2011) Modular synthesis of diphospholipid oligosaccharide fragments of the bacterial cell wall and their use to study the mechanism of moenomycin and other antibiotics. Tetrahedron 67(51):9771–9778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gampe CM, Tsukamoto H, Doud EH, Walker S, Kahne D (2013) Tuning the moenomycin pharmacophore to enable discovery of bacterial cell wall synthesis inhibitors. J Am Chem Soc 135(10):3776–3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gust B, Kieser T, Chater K (2002) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. The John Innes Foundation, Norwich

    Google Scholar 

  • He H, Shen B, Korshalla J, Siegel MM, Carter GT (2000) Isolation and structural elucidation of AC326-alpha, a new member of the moenomycin group. J Antibiot (Tokyo) 53(2):191–195

    Article  CAS  Google Scholar 

  • Horbal L, Kobylyanskyy A, Yushchuk O, Zaburannyi N, Luzhetskyy A, Ostash B, Marinelli F, Fedorenko V (2013) Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus—producer of teicoplanin, drug of last defense. J Biotechnol 168(4):367–372

    Article  CAS  PubMed  Google Scholar 

  • Horbal L, Kobylyanskyy A, Truman AW, Zaburranyi N, Ostash B, Luzhetskyy A, Marinelli F, Fedorenko V (2014) The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 98(22):9295–9309

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics, 2nd edn. John Innes Foundation, Norwich

    Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li TL, Huang F, Haydock SF, Mironenko T, Leadlay PF, Spencer JB (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11(1):107–119

    CAS  PubMed  Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 77(1):112–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopatniuk M, Ostash B, Luzhetskyy A, Walker S, Fedorenko V (2014) Generation and study of the strains of streptomycetes—heterologous hosts for production of moenomycin. Russ J Genet 50(4):360–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovering AL, de Castro LH, Lim D, Strynadka NC (2007) Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315:1402–1405

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makitrynskyy R, Ostash B, Tsypik O, Rebets Y, Doud E, Meredith T, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V (2013) Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 3(10):130121

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostash B, Walker S (2010a) Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Nat Prod Rep 27(11):1594–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostash B, Saghatelian A, Walker S (2007) A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14(3):257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostash B, Doud EH, Lin C, Ostash I, Perlstein DL, Fuse S, Wolpert M, Kahne D, Walker S (2009) Complete characterization of the seventeen step moenomycin biosynthetic pathway. Biochemistry 48(37):8830–8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostash B, Doud E, Fedorenko V (2010b) The molecular biology of moenomycins: towards novel antibiotics based on inhibition of bacterial peptidoglycan glycosyltransferases. Biol Chem 391:499–504

    Article  CAS  PubMed  Google Scholar 

  • Ostash B, Campbell J, Luzhetskyy A, Walker S (2013) MoeH5: a natural glycorandomizer from the moenomycin biosynthetic pathway. Mol Microbiol 90(6):1324–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paphitou NI (2013) Antimicrobial resistance: action to combat the rising microbial challenges. Int J Antimicrob Agents 42

  • Pfaller MA (2006) Flavophospholipol use in animals: positive implications for antimicrobial resistance based on its microbiologic properties. Diagn Microbiol Infect Dis 56(2):115–121

    Article  CAS  PubMed  Google Scholar 

  • Pryka RD, Rodvold KA, Rotschafer JC (1988) Teicoplanin: an investigational glycopeptide antibiotic. Clin Pharm 7(9):647–658

    CAS  PubMed  Google Scholar 

  • Sato T (2013) Unique biosynthesis of sesquarterpenes (C35 terpenes). Biosci Biotechnol Biochem 77(6):1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Song JY, Jeong H, Yu DS, Fischbach MA, Park HS, Kim JJ, Seo JS, Jensen SE, Oh TK, Lee KJ, Kim JF (2010) Draft genome sequence of Streptomyces clavuligerus NRRL 3585, a producer of diverse secondary metabolites. J Bacteriol 192(23):6317–6328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiol 150(1):95–102

    Article  CAS  Google Scholar 

  • Taylor JG, Li X, Oberthür M, Zhu W, Kahne DE (2006) The total synthesis of moenomycin A. J Am Chem Soc 128(47):15084–15095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng YY, Liou JM, Hsu TL, Cheng WC, Wu MS, Wong CH (2014) Development of bacterial transglycosylase inhibitors as new antibiotics: moenomycin A treatment for drug-resistant Helicobacter pylori. Bioorg Med Chem Lett 24(11):2412–2424

    Article  CAS  PubMed  Google Scholar 

  • Wang KC, Ohnuma S (2000) Isoprenyl diphosphate synthases. Biochim Biophys Acta 1529(1–3):33–48

    Article  CAS  PubMed  Google Scholar 

  • Yamamura H, Ohnishi Y, Ishikawa J, Ichikawa N, Ikeda H, Sekine M, Harada T, Horinouchi S, Otoguro M, Tamura T, Suzuki K, Hoshino Y, Arisawa A, Nakagawa Y, Fujita N, Hayakawa M (2012) Complete genome sequence of the motile actinomycete Actinoplanes missouriensis 431(T) (=NBRC 102363(T)). Stand Genomic Sci 7(2):294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Fuse S, Ostash B, Sliz P, Kahne D, Walker S (2008) Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design. ACS Chem Biol 3:429–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalkin H (1993) The amidotransferases. Adv Enzymol Relat Areas Mol Biol 66:203–309

    CAS  PubMed  Google Scholar 

  • Zalkin H, Smith JL (1998) Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol 72:87–144

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was partially based on the research provided by the grant support of the State Fund for Fundamental Research (project no. F60/2-2015, to B.O.) and by NIH grants 2P01AI083214-04 and R03TW009424 (to S.W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The usage of the Agilent 6520 Q-TOF spectrophotometer was made possible by the Taplin Funds for Discovery Program (P.I.: S.W.). We thank Santa Maria J. (Merck) for the careful reading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliya Horbal.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Liliya Horbal and Bohdan Ostash equally contributed.

Electronic supplementary material

ESM 1

(PDF 522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horbal, L., Ostash, B., Luzhetskyy, A. et al. A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus . Appl Microbiol Biotechnol 100, 7629–7638 (2016). https://doi.org/10.1007/s00253-016-7685-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7685-3

Keywords

Navigation