Applied Microbiology and Biotechnology

, Volume 100, Issue 24, pp 10443–10452 | Cite as

Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis

Biotechnologically relevant enzymes and proteins

Abstract

In the phenylpropanoid production process, p-coumaric acid is the most important intermediate metabolite. It is generally accepted that the activity of tyrosine ammonia-lyase (TAL), which converts l-tyrosine to p-coumaric acid, represents the rate-limiting step. Therefore, an error-prone PCR-based random mutagenesis strategy was utilized for screening variants with higher catalytic activity. After rounds of screening, three variant enzymes were obtained, exhibiting improved production rates of 41.2, 37.1, and 38.0 %, respectively. Variants associated with increased expression level (S9N), improved catalytic efficiency (A11T), and enhanced affinity between TAL and L-tyrosine (E518V) were identified as beneficial amino acid substitutions by site-directed mutagenesis. Combining all of the beneficial amino acid substitutions, a variant, MT-S9N/-A11T/-E518V, exhibiting the highest catalytic activity was obtained. The Km value of MT-S9N/-A11T/-E518V decreased by 25.4 % compare to that of wild-type, while the activity, kcat/Km, and p-coumaric-acid yield were improved by 36.5, 31.2, and 65.9 %, respectively. Furthermore, the secondary structure of the 5′-end of MT-S9N mRNA and the three-dimensional protein structure of MT-E518V were modeled. Therefore, two potential mechanisms were speculated: (1) a simplified mRNA 5′-end secondary structure promotes TAL expression and (2) anchoring the flexible loop region (Glu325–Arg336) to maintain the active-site pocket opening ensures easy access by the l-tyrosine to the active site and thus improves p-coumaric acid yields.

Keywords

p-Coumaric acid Error-prone PCR Escherichia coli Flavonoids Phenylpropanoids Random mutation 

References

  1. Abell CW, Shen RS (1987) Phenylalanine ammonia-lyase from the yeast Rhodotorula glutinis. Methods Enzymol 142:242–253. doi:10.1016/s0076-6879(87)42033-8 CrossRefPubMedGoogle Scholar
  2. Ahmed M, Goldgur Y, Hu J, Guo H-F, Cheung N-KV (2013) In silico driven redesign of a clinically relevant antibody for the treatment of GD2 positive tumors. PLoS One 8:e63359. doi:10.1371/journal.pone.0063359 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berner M, Krug D, Bihlmaier C, Vente A, Muller R, Bechthold A (2006) Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J Bacteriol 188:2666–2673. doi:10.1128/jb.188.7.2666-2673.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. doi:10.1093/nar/gku340 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T (2004) Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry 43:11403–11416. doi:10.1021/bi049053+ CrossRefPubMedGoogle Scholar
  6. Cheong DE, Ko KC, Han Y, Jeon HG, Sung BH, Kim GJ, Choi JH, Song JJ (2015) Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5′ coding region. Biotechnol Bioeng 112:822–826. doi:10.1002/bit.25478 CrossRefPubMedGoogle Scholar
  7. Chica RA, Doucet N, Pelletier JN (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16:378–384. doi:10.1016/j.copbio.2005.08.004 CrossRefPubMedGoogle Scholar
  8. Cobb RE, Si T, Zhao H (2012) Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol 16:285–291. doi:10.1016/j.cbpa.2012.05.186 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cobb RE, Sun N, Zhao H (2013) Directed evolution as a powerful synthetic biology tool. Methods 60:81–90. doi:10.1016/j.ymeth.2012.03.009 CrossRefPubMedGoogle Scholar
  10. Cook NC, Samman S (1996) Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76. doi:10.1016/0955-2863(95)00168-9 CrossRefGoogle Scholar
  11. Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:1–15. doi:10.3389/fpls.2012.00222 Google Scholar
  12. Fang Z, Zhang J, Liu BH, Du GC, Chen J (2015) Insight into the substrate specificity of keratinase KerSMD from Stenotrophomonas maltophilia by site-directed mutagenesis studies in the S1 pocket. RSC Adv 5:74953–74960. doi:10.1039/C5RA12598G CrossRefGoogle Scholar
  13. Fiser A, Sali A (2003) MODELLER: generation and refinement of homology-based protein structure models. In: Carter CW, Sweet RM (eds) Macromolecular crystallography. Pt D. Elsevier Academic Press Inc, San Diego, pp. 461–491. doi:10.1016/s0076-6879(03)74020-8 CrossRefGoogle Scholar
  14. Fowler ZL, Koffas MAG (2009) Biosynthesis and biotechnological production of flavanones: current state and perspectives. Appl Microbiol Biotechnol 83:799–808. doi:10.1007/s00253-009-2039-z CrossRefPubMedGoogle Scholar
  15. Hess AK, Saffert P, Liebeton K, Ignatova Z (2015) Optimization of translation profiles enhances protein expression and solubility. PLoS One 10:e0127039. doi:10.1371/journal.pone.0127039 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jendresen CB, Stahlhut SG, Li MJ, Gaspar P, Siedler S, Forster J, Maury J, Borodina I, Nielsen AT (2015) Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol 81:4458–4476. doi:10.1128/aem.00405-15 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J (2010) Practically useful: what the ROSETTA protein modeling suite can do for you. Biochemistry 49:2987–2998. doi:10.1021/bi902153g CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kindl H (1970) The regulation of the L-tyrosine ammonia-lyase activity by phenolic compounds. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie 351:792–798. doi:10.1515/bchm2.1970.351.2.792 CrossRefPubMedGoogle Scholar
  19. Kyndt JA, Meyer TE, Cusanovich MA, Van Beeumen JJ (2002) Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett 512:240–244. doi:10.1016/s0014-5793(02)02272-x CrossRefPubMedGoogle Scholar
  20. Lin YH, Sun XX, Yuan QP, Yan YJ (2013) Combinatorial biosynthesis of plant-specific coumarins in bacteria. Metab Eng 18:69–77. doi:10.1016/j.ymben.2013.04.004 CrossRefPubMedGoogle Scholar
  21. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666. doi:10.1021/ja01318a036 CrossRefGoogle Scholar
  22. Luo Y, Li B-Z, Liu D, Zhang L, Chen Y, Jia B, Zeng B-X, Zhao H, Yuan Y-J (2015) Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 44:5265–5290. doi:10.1039/C5CS00025D CrossRefPubMedPubMedCentralGoogle Scholar
  23. Matsumoto K, Tanaka Y, Watanabe T, Motohashi R, Ikeda K, Tobitani K, Yao M, Tanaka I, Taguchi S (2013) Directed evolution and structural analysis of NADPH-dependent acetoacetyl coenzyme A (acetoacetyl-CoA) reductase from Ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Appl Environ Microbiol 79:6134–6139. doi:10.1128/aem.01768-13 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S (2005) Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol 68:498–504. doi:10.1007/s00253-005-1916-3 CrossRefPubMedGoogle Scholar
  25. Orhan IE, Nabavi SF, Daglia M, Tenore GC, Mansouri K, Nabavi SM (2015) Naringenin and atherosclerosis: a review of literature. Curr Pharm Biotechnol 16:245–251. doi:10.2174/1389201015666141202110216 CrossRefPubMedGoogle Scholar
  26. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394. doi:10.1038/nrg3927 CrossRefPubMedGoogle Scholar
  27. Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181–188. doi:10.1016/j.ymben.2015.08.003 CrossRefPubMedGoogle Scholar
  28. Santos-Martins D, Forli S, Ramos MJ, Olson AJ (2014) AutoDock4(Zn): an improved auto dock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model 54:2371–2379. doi:10.1021/ci500209e CrossRefPubMedPubMedCentralGoogle Scholar
  29. Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400. doi:10.1016/j.ymben.2011.02.002 CrossRefPubMedGoogle Scholar
  30. Seo SW, Yang J-S, Kim I, Yang J, Min BE, Kim S, Jung GY (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 15:67–74. doi:10.1016/j.ymben.2012.10.006 CrossRefPubMedGoogle Scholar
  31. Takase K, Taguchi S, Doi Y (2003) Enhanced synthesis of poly(3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. J Biochem 133:139–145. doi:10.1093/jb/mvg015 CrossRefPubMedGoogle Scholar
  32. Tian JA, Wang P, Gao S, Chu XY, Wu NF, Fan YL (2010) Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. FEBS J 277:4901–4908. doi:10.1111/j.1742-4658.2010.07895.x CrossRefPubMedGoogle Scholar
  33. Vannelli T, Qi WW, Sweigard J, Gatenby AA, Sariaslani FS (2007a) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng 9:142–151. doi:10.1016/j.ymben.2006.11.001 CrossRefPubMedGoogle Scholar
  34. Vannelli T, Xue Z, Breinig S, Qi WW, Sariaslani FS (2007b) Functional expression in Escherichia coli of the tyrosine-inducible tyrosine ammonia-lyase enzyme from yeast Trichosporon cutaneum for production of p-hydroxycinnamic acid. Enzym Microb Technol 41:413–422. doi:10.1016/j.enzmictec.2007.03.013 CrossRefGoogle Scholar
  35. Verma R, Schwaneberg U, Roccatano D (2012) Computer-aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Comput Struct Biotechnol J 2:e201209008. doi:10.5936/csbj.201209008 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wang L, Gamez A, Sarkissian CN, Straub M, Patch MG, Won Han G, Striepeke S, Fitzpatrick P, Scriver CR, Stevens RC (2005) Structure-based chemical modification strategy for enzyme replacement treatment of phenylketonuria. Mol Genet Metab 86:134–140. doi:10.1016/j.ymgme.2005.05.012 CrossRefPubMedGoogle Scholar
  37. Wang Q, He JW, Wu D, Wang J, Yan J, Li H (2015) Interaction of alpha-cyperone with human serum albumin: determination of the binding site by using Discovery Studio and via spectroscopic methods. J Lumin 164:81–85. doi:10.1016/j.jlumin.2015.03.025 CrossRefGoogle Scholar
  38. Watts KT, Mijts BN, Lee PC, Manning AJ, Schmidt-Dannert C (2006) Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem Biol 13:1317–1326. doi:10.1016/j.chembiol.2006.10.008 CrossRefPubMedGoogle Scholar
  39. Wu JJ, Du GC, Zhou JW, Chen J (2013a) Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 16:48–55. doi:10.1016/j.ymben.2012.11.009 CrossRefPubMedGoogle Scholar
  40. Wu JJ, Du GC, Zhou JW, Chen J (2014a) Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. J Biotechnol 188:72–80. doi:10.1016/j.jbiotec.2014.08.016 CrossRefPubMedGoogle Scholar
  41. Wu JJ, Liu PR, Fan YM, Bao H, Du GC, Zhou JW, Chen J (2013b) Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine. J Biotechnol 167:404–411. doi:10.1016/j.jbiotec.2013.07.030 CrossRefPubMedGoogle Scholar
  42. Wu JJ, Zhou TT, Du GC, Zhou JW, Chen J (2014b) Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. PLoS One 9:e101492. doi:10.1371/journal.pone.0101492 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xue Z, McCluskey M, Cantera K, Ben-Bassat A, Sariaslani RS, Huang L (2007a) Improved production of p-hydroxycinnamic acid from tyrosine using a novel thermostable phenylalanine/tyrosine ammonia lyase enzyme. Enzym Microb Technol 42:58–64. doi:10.1016/j.enzn-tictec.2007.07.025 CrossRefGoogle Scholar
  44. Xue Z, McCluskey M, Cantera K, Sariaslani FS, Huang L (2007b) Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 34:599–604. doi:10.1007/s10295-007-0229-1 CrossRefPubMedGoogle Scholar
  45. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115. doi:10.1093/nar/gnh110 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhou JW, Du GC, Chen J (2014) Novel fermentation processes for manufacturing plant natural products. Curr Opin Biotechnol 25:17–23. doi:10.1016/j.copbio.2013.08.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations