Applied Microbiology and Biotechnology

, Volume 100, Issue 15, pp 6555–6570 | Cite as

Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments

  • Nelson DuránEmail author
  • Gerson Nakazato
  • Amedea B. SeabraEmail author


The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.


Silver nanoparticles Silver chloride nanoparticles Biogenic synthesis X-ray diffraction Antimicrobial Antibacterial 



Support from INOMAT (CNPq), Brazilian Network on Nanotechnology (MCTI/CNPq), NanoBioss (MCTI), BIOTEC 28/2013 (CNPq), and FAPESP are acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Abbasi E, Milani M, Aval SF, Kouhi M, Akbarzadeh A, Nasrabadi HT, Nikasa P, Joo SW, Hanifehpour Y, Nejati-Koshki K, Samiei M (2014) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol:1549–7828. doi: 10.3109/1040841X.2014.912200
  2. Afshar P, Sedaghat S (2016) Bio-synthesis of silver nanoparticles using water extract of Satureja hortensis L and evaluation of the antibacterial properties. Curr Nanosci 12:90–93. doi: 10.2174/1573413711666150529202238 CrossRefGoogle Scholar
  3. Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-borne Zoonotic Dis 12:262–268. doi: 10.1089/vbz.2011.0661 CrossRefPubMedGoogle Scholar
  4. Ashokkumar S, Ravi S, Velmurugan S (2013) Green synthesis of silver nanoparticles from Gloriosa superba L. leaf extract and their catalytic activity. Spectr Acta Part A: Mol Biomol Spectr 115:388–392. doi: 10.1016/j.saa.2013.06.050 CrossRefGoogle Scholar
  5. Awwad AM, Salem NM, W. Khrfan W, Ibrahim Q (2015a) FT-IR spectroscopy and x-ray diffraction characterization of biosynthesised silver/silver chloride nanoparticles. Arab J Phys Chem 2:15–19 Google Scholar
  6. Awwad AM, Salem NM, Ibrahim QM, Abdeen AO (2015b) Phytochemical fabrication and characterization of silver/silver chloride nanoparticles using Albizia julibrissin flowers extract. Adv Mater Lett 6:726–730. doi: 10.5185/amlett.2015.5816 Google Scholar
  7. Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31:11605–11612. doi: 10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  8. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139. doi: 10.1016/j.colsurfa.2009.02.008 CrossRefGoogle Scholar
  9. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160–164. doi: 10.1016/j.colsurfb.2005.11.026 CrossRefPubMedGoogle Scholar
  10. Bonde SR, Rathod DP, Ingle AP, Ade RB, Gade AK, Rai MK (2012) Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci Methods 1:25–36. doi: 10.1080/17458080.2010.529172 CrossRefGoogle Scholar
  11. Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81:607–621. doi: 10.3797/scipharm.1302-02 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chauhan R, Reddy A, Abraham J (2014) Biosynthesis and antimicrobial potential of silver and zinc oxide nanoparticles using Candida diversa strain JA1. Der Pharma Chem 6:39–47 Google Scholar
  13. Das R, Jagannathan R, Sharan C, Kumar U, Poddar P (2009) Mechanistic study of surface functionalization of enzyme lysozyme synthesized Ag and Au nanoparticles using surface enhanced Raman spectroscopy. J Phys Chem 113:21493–21500. doi: 10.1021/jp905806t Google Scholar
  14. de Lima R, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–879. doi: 10.1002/jat.2780 CrossRefPubMedGoogle Scholar
  15. Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pac J Trop Dis 3:174–179. doi: 10.1016/S2222-1808(13)60035-3 CrossRefPubMedCentralGoogle Scholar
  16. Dhas TS, Kumar VG, Karthick V, Angel KJ, Govindaraju K (2014) Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. Spectrochim Acta Part A: Mol Biomol Spect 120:416–420. doi: 10.1016/j.saa.2013.10.044 CrossRefGoogle Scholar
  17. Dong X, Ji X, Wu H, Zhao L, Li J, Yang W (2009) Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C 113:6573–6576. doi: 10.1021/jp900775b CrossRefGoogle Scholar
  18. Durán N, Marcato PD, Teixeira Z, Durán M, Costa FTM, Brocchi M (2009) State of art of nanobiotechnology applications in neglected diseases. Curr Nanosci 5:396–408. doi: 10.2174/157341309789378069 CrossRefGoogle Scholar
  19. Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959. doi: 10.1590/S0103-50532010000600002 CrossRefGoogle Scholar
  20. Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624. doi: 10.1007/s00253-011-3249-8 CrossRefPubMedGoogle Scholar
  21. Durán N, Seabra AB, De Lima R (2014a) Cytotoxicity and genotoxicity of biogenically synthesized silver nanoparticles. In Nanotoxicology: materials, methodologies, and assessments. (N. Durán, S.S. Guterres, O.L. Alves, Eds). Springer, Chap 11. 245–263. ISBN 978–3–642-24427-8Google Scholar
  22. Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC (2014b) Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. Springer Plus, 3:645. 3/1/645
  23. Durán M, Silveira CP, Durán N (2015a) Non enzymatic biogenic metallic nanoparticles associated to protein catalytic agents: a mini-review. IET Nanobiotechnol 9:314–323. doi: 10.1049/iet-nbt.2014.0054 CrossRefPubMedGoogle Scholar
  24. Durán N, Silveira CP, Durán M, Martinez DST (2015b) Silver nanoparticle protein corona and toxicity: a mini-review. J Nanomater 13:55. doi: 10.1186/s12951-015-0114-4 Google Scholar
  25. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: NBM 12:789–799. doi: 10.1016/j.nano.2015.11.016 Google Scholar
  26. Eugenio M, Müller N, Frasés S, Almeida-Paes R, Lima LMTR, Lemgruber L, Farina M, de Souza W, Sant’Anna C (2016) Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv 6:9893–9904. doi: 10.1039/C5RA22727E CrossRefGoogle Scholar
  27. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interf Sci 189–190:1–20. doi: 10.1016/j.cis.2012.12.001 CrossRefGoogle Scholar
  28. Fu M, Li Q, Sun D, Lu Y, He N, Deng X, Wang H, Hunag J (2006) Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng 14:114–117. doi: 10.1016/S1004-9541(06)60046-3 CrossRefGoogle Scholar
  29. Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M (2010) Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr Nanosci 6:370–375. doi: 10.2174/157341310791659026 CrossRefGoogle Scholar
  30. Gade A, Rai M, Kulkarni S (2011) Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. Inter J Green Nanotechnol 3:153–159. doi: 10.1080/19430892.2011.628573 CrossRefGoogle Scholar
  31. Gade A, Gaikwad S, Durán N, Rai M (2014) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59. doi: 10.1016/j.micron.2013.12.005 CrossRefPubMedGoogle Scholar
  32. Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, Durán N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24:1974–1982. doi: 10.5935/0103-5053.20130247 Google Scholar
  33. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496. doi: 10.2147/IJN.S24793 PubMedPubMedCentralGoogle Scholar
  34. Gopinath V, Priyadarshini S, Priyadharsshini NM, Pandian K, Velusamy P (2013) Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn. Mater Lett 91:224–227. doi: 10.1016/j.matlet.2012.09.102 CrossRefGoogle Scholar
  35. Gupta A, Bonde SR, Gaikwad S, Ingle A, Gade AK, Rai M (2014) Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol 8:172–178. doi: 10.1049/iet-nbt.2013.0015 CrossRefPubMedGoogle Scholar
  36. Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University J Basic Appl Sci 4:225–231. doi: 10.1016/j.bjbas.2015.07.004 CrossRefGoogle Scholar
  37. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Rad Res Appl Sci 8:265–275. doi: 10.1016/j.jrras.2015.01.007 Google Scholar
  38. Ingal AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an ecofriendly approach. J Nanomed Nanotechol 4:165. doi: 10.4172/2157-7439.1000165 Google Scholar
  39. Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48:1152–1156 PubMedGoogle Scholar
  40. Jeevan P, Ramya K, Rena AE (2012) Extracellular biosynthesis of silver nanoparticles by cuture supernatant of Pseudomonas aeruginosa. Indian J Biotechnol 11:72–76 Google Scholar
  41. Jha AK, Prasad K, Kulkarni AR (2008) Yeast mediated synthesis of silver nanoparticles. Inter J Nanosci Nanotechnol 4:17–21 Scholar
  42. Johnson I, Prabu HJ (2015) Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora. Int Nano Lett 5:43–51. doi: 10.1007/s40089-014-0136-1 CrossRefGoogle Scholar
  43. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413. doi: 10.1016/j.matlet.2008.06.051 CrossRefGoogle Scholar
  44. Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KVB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267. doi: 10.1007/s00449-013-0994-3 CrossRefPubMedGoogle Scholar
  45. Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2:47. doi: 10.1186/s40643-015-0076-2 CrossRefGoogle Scholar
  46. Khatami M, Pourseyedi S, Khatami M, Hamidi H, Zaeifi M, Soltani L (2015) Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour Bioproc 2:19. doi: 10.1186/s40643-015-0043-y CrossRefGoogle Scholar
  47. Kora AJ, Arunachalam J (2012) Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): a dual functional reductant and stabilizer. J Nanomat 2012: Article ID 869765. Scholar
  48. Kora AJ, Beedu SR, Jayaraman A (2012) Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Lett 2:17 Scholar
  49. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban KSK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  50. Krithiga N, Rajalakshmi A, Jayachitra A (2015) Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J Nanosci Article ID 928204.
  51. Kumar DA (2012) Rapid and green synthesis of silver nanoparticles using the leaf extracts of Parthenium hysterophosphorus. A novel biological approach. Inter Res J Pharm 3:169–173
  52. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445. doi: 10.1007/s10529-006-9256-7 CrossRefGoogle Scholar
  53. Kumar U, Ranjan AK, Sharan C, Hardikarc AA, Pundle A, Poddar P (2012) Green approach towards size-controlled synthesis of biocompatible antibacterial metal nanoparticles in aqueous phase using lysozyme. Curr Nanosci 8:130–140. doi: 10.2174/1573413711208010130 CrossRefGoogle Scholar
  54. Lavakumar V, Masilamani K, Ravichandiran V, Venkateshan N, Saigopal DVR, Kumar CKA, Sowmya C (2015) Promising upshot of silver nanoparticles primed from Gracilaria crassa against bacterial pathogens. Chem Centr J 9:42. doi: 10.1186/s13065-015-0120-5 CrossRefGoogle Scholar
  55. Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7:3162–3165 Google Scholar
  56. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476. doi: 10.3390/ijms13010466 CrossRefPubMedGoogle Scholar
  57. Longhi C, Santos JP, Morey AT, Marcato PD, Durán N, Pinge-Filho P, Nakazato G, Yamada-Ogatta SF, Yamauchi LM (2016) Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Med Mycol 54:428–432. doi: 10.1093/mmy/myv036
  58. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353:433–444. doi: 10.1016/j.jcis.2010.09.088 CrossRefPubMedGoogle Scholar
  59. Marcato PD, Durán N (2011) Metal nanoparticles in microbiology. In: M.Rai, Durán N (eds) Biogenic silver nanoparticles: applications in medicines and textiles and their health implications. Springer verlag, Berlin Chap. 11, pp. 249–267Google Scholar
  60. Marcato PD, Parizotto NV, Martinez DST, Paula AJ, Ferreira IR, Melo PS, Durán N, Alves OL (2013) New hybrid material based on layered double hydroxides and biogenic silver nanoparticles: antimicrobial activity and cytotoxic effect. J Braz Chem Soc 24:266–272 CrossRefGoogle Scholar
  61. Mashwani Z, Khan T, Khan MA, Nadhman A (2015) Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl Microbiol Biotechnol 99:9923–9934. doi: 10.1007/s00253-015-6987-1 CrossRefPubMedGoogle Scholar
  62. Mathew J, Rathod V, Singh D, Ninganagouda S, Singh AK, Kulkarni P (2015) Enhanced efficacy of ketoconazole coated silver nanoparticles against the fungus Malassezia furfur a dandruff causing agent. World J Pharm Pharm Sci 4:1246–1258 Google Scholar
  63. Metuku RP, Pabba S, Burra S, Hima BNSVSSSL, Gudikandula K, Charya MAS (2014) Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: their characterization and antimicrobial activity. Biotech 4:227–234. doi: 10.1007/s13205-013-0138-0 Google Scholar
  64. Miri A, Sarani M, Bazaz MR, Darroudi M (2015) Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochim Acta Part A: Mol Biomol Spectr 141:287–291. doi: 10.1016/j.saa.2015.01.024 CrossRefGoogle Scholar
  65. Mittal J, Batra A, Singh A, Sharma MM (2014) Phytofabrication of nanoparticles through plant as nanofactories. Adv Nat Sci: Nanosci Nanotechnol 5:043002. doi: 10.1088/2043-6262/5/4/043002 Google Scholar
  66. Moghaddam AB, Namvar F, Moniri M, PMd T, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565. doi: 10.3390/molecules200916540 CrossRefGoogle Scholar
  67. Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumoniae: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421. doi: 10.1016/j.materresbull.2008.11.021 CrossRefGoogle Scholar
  68. Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:Article ID 546074. doi:10.1155/2011/546074.Google Scholar
  69. Naik BR, Gowreeswari GS, Singh Y, Satyavathi R, Daravath SS, Reddy PR (2014) Bio-synthesis of silver nanoparticles from leaf extract of Pongamia pinnata as an effective larvicide on dengue vector Aedes albopictus (Skuse) (Diptera: Culicidae). Advan Entomol 2:93–101 CrossRefGoogle Scholar
  70. Namasivayam SKR, Jayakumar D, Kumar R, Bharani RSA (2015) Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis. J Coastal Life Med 3:265–272. doi: 10.12980/JCLM.3.201514B324 Google Scholar
  71. Natsuki J, Natsuki T, Hashimoto Y (2015) A review of silver nanoparticles: synthesis methods, properties and applications. Inter J Mat Sci Appl 4:325–332. doi: 10.11648/j.ijmsa.20150405.17 Google Scholar
  72. Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chem Bio Chem 9:1415–1422. doi: 10.1002/cbic.200700592 CrossRefPubMedGoogle Scholar
  73. Parikh RY, Ramanathan R, Coloe PJ, Bhargava SK, Patole MS, Shouche YS, Bansal V (2011) Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One 6:e21401. doi: 10.1371/journal.pone.0021401 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pasupuleti VR, TNVKV P, RA S, SK B, Narasimhulu G, CS R, IA R, SH G (2013) Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Intern J Nanomed 8:3355–3364CrossRefGoogle Scholar
  75. Patil HB, Borse SV, Patil DR, Patil UK, Patil HM (2011) Synthesis of silver nanoparticles by microbial method and their characterization. Arch Phys Res 2:153–158 Google Scholar
  76. Paulkumar K, Rajeshkumar S, Gnanajobitha G, Vanaja M, Malarkodi C, Annadurai G (2013) Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. ISRN Nanomat Article ID 317963.
  77. Phanjom P, Ahmed G (2015) Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC no. 1846) and its characterizations. Nanosci Nanotechnol 5:14–21. doi: 10.5923/j.nn.20150501.03 Google Scholar
  78. Potiyaraj P, Kumlangdudsana P, Dubas ST (2007) Synthesis of silver chloride nanocrystal on silk fibers. Mater Lett 61:2464–2466. doi: 10.1016/j.matlet.2006.09.039 CrossRefGoogle Scholar
  79. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi: 10.1016/j.biotechadv.2008.09.002 CrossRefPubMedGoogle Scholar
  80. Roy S, Das TK (2015) Protein capped silver nanoparticles from fungus: x-ray diffraction studies with antimicrobial properties against bacteria. Int J ChemTech Res 7:1452–1459 PC30%20(1452-1459).pdfGoogle Scholar
  81. Roy K, Sarkar CK, Ghosh CK (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 5:953–959. doi: 10.1007/s13204-014-0392-4 CrossRefGoogle Scholar
  82. Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces 81:358–362. doi: 10.1016/j.colsurfb.2010.07.036 CrossRefPubMedGoogle Scholar
  83. Saikia D, Gogoi PK, Phukan P, Bhuyan N, Borchetia S, Saikia J (2015) Green synthesis of silver nanoparticles using Asiatic pennywort and Bryophyllum leaves extract and their antimicrobial activity. Adv Mater Lett 6:260–264. doi: 10.5185/amlett.2015.5655 Google Scholar
  84. Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165:221–234. doi: 10.1007/s12010-011-9245-8 CrossRefPubMedGoogle Scholar
  85. Saminathan K (2015) Biosynthesis of silver nanoparticles from dental caries causing fungi Candida albicans. Int J Curr Microbiol App Sci 4:1084–1091 Google Scholar
  86. Samundeeswari A, Dhas SP, Nirmala J, John SP, Mukherjee A, Chandrasekaran N (2012) Biosynthesis of silver nanoparticles using actinobacterium Streptomyces albogriseolus and its antibacterial activity. Biotechnol Appl Biochem 59:503–507. doi: 10.1002/bab.1054 CrossRefPubMedGoogle Scholar
  87. Sarsar KMV, Selwal MK, Selwal KK (2015) Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum. J Saudi Chem Soc 19:682–688. doi: 10.1016/j.jscs.2014.07.001 CrossRefGoogle Scholar
  88. Sathishkumar M, Sneha K, Won SW, Cho C-W, Kim S, Yun Y-S (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B: Biointerfaces 73:332–338. doi: 10.1016/j.colsurfb.2009.06.005 CrossRefPubMedGoogle Scholar
  89. Sathishkumar M, Sneha K, Yun Y-S (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101:7958–7965. doi: 10.1016/j.biortech.2010.05.051 CrossRefPubMedGoogle Scholar
  90. Seabra AB, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5:934–975. doi: 10.3390/met5020934 CrossRefGoogle Scholar
  91. Selvi KV, Sivakumar T (2012) Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int J Curr Microbiol App Sci 1:56–62 Sivakumar.pdf.Google Scholar
  92. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compacting producing fungal strain. Process Biochem 44:939–943. doi: 10.1016/j.procbio.2009.04.009 CrossRefGoogle Scholar
  93. Shen Z, Liu B, Pareek V, Wang S, Li X, Liu L, Liu S (2015) Sustainable synthesis of highly efficient sunlight driven Ag embedded AgCl photocatalysts. RSC Adv 5:80488–80495. doi: 10.1039/C5RA17696D CrossRefGoogle Scholar
  94. Shete S, Shende S, Bhagwat K, Dagade S, Deshpande N, Waghmode S (2014) Green synthesis of silver chloride nanoparticles by using Rosa macdub petal extract. Inter J Biosci Nanosci 1:96–99 Google Scholar
  95. Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh ME-A, Yang DC (2015) Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomedicine 10:2567–2577. doi: 10.2147/IJN.S72313 PubMedPubMedCentralGoogle Scholar
  96. Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2:112–121. doi: 10.3844/ajnsp.2011.112.121 CrossRefGoogle Scholar
  97. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499. doi: 10.1007/s00436-012-3158-5 CrossRefPubMedGoogle Scholar
  98. Suresh AK, Pelletier DA, Wang W, Moon J-W, Gu B, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol 44:5210–5215. doi: 10.1021/es903684r CrossRefPubMedGoogle Scholar
  99. Trinh ND, Nguyen TTB, Nguyen TH (2015) Preparation and characterization of silver chloride nanoparticles as an antibacterial agent. Adv Nat Sci: Nanosci Nanotechnol 6 045011. doi: 10.1088/2043-6262/6/4/045011
  100. Vanaja M, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Chitra K, Malarkodi C, Annadurai G (2015) Fungal assisted intracellular and enzyme based synthesis of silver nanoparticles and its bactericidal efficiency. Inter Res J Pharm Biosci 2:8–19 Google Scholar
  101. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces 53:55–59. doi: 10.1016/j.colsurfb.2006.07.014 CrossRefPubMedGoogle Scholar
  102. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418. doi: 10.1016/j.matlet.2006.07.042 CrossRefGoogle Scholar
  103. Vimalanathan AB, Ernest V, Arumugasamy K, Tyagi MG (2013) Biosynthesis of silver nano-particles by the bacterium Micrococcus luteus. Inter J. Appl Biol Pharm Technol 4:1–5 Google Scholar
  104. Vivek M, Kumar PS, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotech 3:143–148 . Google Scholar
  105. Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo MH (2008) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem 120:8049–8051. doi: 10.1002/ange.200802483 CrossRefGoogle Scholar
  106. Yang X, Du Y, Li D, Lv Z, Wang E (2011) One-step synthesized silver micro-dendrites used as novel separation mediums and their applications in multi-DNA analysis. Chem Commun 47:10581–10583. doi: 10.1039/c1cc11374g CrossRefGoogle Scholar
  107. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16:6667–6676. doi: 10.3390/molecules16086667 CrossRefPubMedGoogle Scholar
  108. Zhao X, Zhang J, Wang B, Zada A, Humayun M (2015) Biochemical synthesis of Ag/AgCl nanoparticles for visible-light-driven photocatalytic removal of colored dyes. Materials 8:2043–2053. doi: 10.3390/ma8052043 CrossRefGoogle Scholar
  109. Zonooz NF, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Scientia Iranica F 18:1631–1635. doi: 10.1016/j.scient.2011.11.029 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Chemistry, Biological Chemistry LaboratoryUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Brazilian Nanotechnology National Laboratory (LNNano-CNPEM)CampinasBrazil
  3. 3.Laboratory of Nanomaterials Synthesis and Biological Interactions (NanoBioss), Institute of ChemistryUniversidade Estadual de CampinasCampinasBrazil
  4. 4.Departament of MicrobiologyUniversidade Estadual de LondrinaLondrinaBrazil
  5. 5.Exact and Earth Sciences DepartmentUniversidade Federal de São PauloDiademaBrazil
  6. 6.Center of Natural and Human SciencesUniversidade Federal do ABCSanto AndréBrazil

Personalised recommendations