Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 18, pp 8203–8212 | Cite as

Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora

  • Yanling Zheng
  • Lijun Hou
  • Min Liu
  • Guoyu Yin
  • Juan Gao
  • Xiaofen Jiang
  • Xianbiao Lin
  • Xiaofei Li
  • Chendi Yu
  • Rong Wang
Environmental biotechnology

Abstract

Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 106–1.56 × 107 copies g−1), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 106–1.12 × 107 copies g−1). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12–14 % N2 generation with rates of 0.43–1.58 nmol N g−1 h−1, while anammox activity in the non-rhizosphere zone contributed to only 4–7 % N2 production with significantly lower activities (0.28–0.83 nmol N g−1 h−1). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling.

Keywords

Anaerobic ammonium oxidation (anammox) Rhizosphere Spartina alterniflora Intertidal sediment Nitrogen cycle 

Notes

Acknowledgments

This study was together funded by the National Natural Science Foundation of China (Nos. 41322002, 41271114, 41130525, 41071135, and 41501524), the Program for New Century Excellent Talents in University (NCET), China Postdoctoral Science Foundation (2015M581567), and the State Key Laboratory of Estuarine and Coastal Research. Great thanks are also given to Wayne Gardner and anonymous reviewers for their constructive suggestions on the earlier versions of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Supplementary material

253_2016_7625_MOESM1_ESM.pdf (655 kb)
ESM 1 (PDF 654 kb)

References

  1. An S, Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser 237:41–50CrossRefGoogle Scholar
  2. Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot 86:687–703CrossRefGoogle Scholar
  3. Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S (2013) Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus Scalindua” group. Appl Environ Microbiol 79:4145–4148CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boran K, Kolevab M, Arsovb R, van der Starc W, Jetten MSM, Strous M (2006) Adaptation of a freshwater anammox population to high salinity wastewater. J Biotechnol 126:546–553CrossRefGoogle Scholar
  5. Brunea A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710CrossRefGoogle Scholar
  6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) Qiime allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chu JY, Zhang JP, Zhou XH, Liu B, Li YM (2015) A comparison of anammox bacterial abundance and community structures in three different emerged plants-related sediments. Curr Microbiol 71:421–427CrossRefPubMedGoogle Scholar
  8. Dale OR, Tobias CR, Song B (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ Microbiol 11:1194–1207CrossRefPubMedGoogle Scholar
  9. Dalsgaard T, Stewart FJ, Thamdrup B, De Brabandere L, Revsbech NP, Ulloa O, Canfield DE, DeLong EF (2014) Oxygen at nanomolar levels reversibly suppresses process rates and gene expression anammox and denitrification in the oxygen minimum zone off northern Chile. mBio 5(6):e01966–e01914CrossRefPubMedPubMedCentralGoogle Scholar
  10. Deng F, Hou LJ, Liu M, Zheng Y, Yin G, Li X, Lin X, Chen F, Gao J, Jiang X (2015) Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary. J Geophys Res Biogeosci 120:1521–1531CrossRefGoogle Scholar
  11. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929CrossRefPubMedGoogle Scholar
  12. Engström P, Dalsgaard T, Hulth S, Aller RC (2005) Anaerobic ammonium oxidation by nitrite (anammox): implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta 69:2057–2065CrossRefGoogle Scholar
  13. Fu B, Liu J, Yang H, Hsu TC, He B, Dai M, Kao SJ, Zhao M, Zhang XH (2015) Shift of anammox bacterial community structure along the Pearl Estuary and the impact of environmental factors. J Geophys Res Oceans 120:2869–2883CrossRefGoogle Scholar
  14. Giblin AE, Wieder RK (1992) Sulphur cycling in marine and freshwater wetlands. In: Howarth RW, Steward JWB, Ivanov MV (eds) Sulphur cycling on the continents: wetlands, terrestrial ecosystems, and associated water bodies. Wiley, Chichester, pp. 85–117Google Scholar
  15. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296CrossRefPubMedGoogle Scholar
  16. Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, Damsté JSS, Krüger S, Graco M, Gutiérrez D, Kuypers MMM (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol Oceanogr 52:923–933CrossRefGoogle Scholar
  17. Hou LJ, Liu M, Xu SY, Ou DN, Yu J, Cheng SB, Lin X, Yang Y (2007) The effects of semi-lunar spring and neap tidal change on nitrification, denitrification, and N2O vertical distribution in the intertidal sediments of the Yangtze Estuary, China. Estuar Coast Shelf Sci 73:607–616CrossRefGoogle Scholar
  18. Hou LJ, Zheng YL, Liu M, Gong J, Zhang XL, Yin GY, You LL (2013) Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. J Geophys Res Biogeosci 118:1237–1246CrossRefGoogle Scholar
  19. Humbert S, Tarnawski S, Fromin N, Mallet M, Aragno M, Zopfi J (2010) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4:450–454CrossRefPubMedGoogle Scholar
  20. Kartal B, van Niftrik L, Rattray J, de Vossenberg J, Schmid MC, Damste JS, Jetten MSM, Strous M (2008) CandidatusBrocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63:46–55CrossRefPubMedGoogle Scholar
  21. Kim IN, Lee K, Gruber N, Karl DM, Bullister JL, Yang S, Kim T (2014) Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346:1102–1106CrossRefPubMedGoogle Scholar
  22. Koop-Jakobsen K, Giblin AE (2009) Anammox in tidal marsh sediments: the role of salinity, nitrogen loading, and marsh vegetation. Estuar Coasts 32:238–245CrossRefGoogle Scholar
  23. Lee RW (2003) Physiological adaptations of the invasive cordgrass Spartina anglica to reducing sediments: rhizome metabolic gas fluxes and enhanced O2 and H2S transport. Mar Biol 143:9–15CrossRefGoogle Scholar
  24. Lee KS, Dunton KH (2000) Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics. J Exp Mar Biol Ecol 255:201–214CrossRefPubMedGoogle Scholar
  25. Li HP, Zhang LQ, Wang DH (2006) Distribution of an exotic plant Spartina alterniflora in Shanghai. Biodivers Sci 14:114–120CrossRefGoogle Scholar
  26. Liu D, Fang S, Tian Y, Chang SX (2014) Nitrogen transformations in the rhizosphere of different tree types in a seasonally flooded soil. Plant Soil Environ 60:249–254Google Scholar
  27. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172CrossRefPubMedGoogle Scholar
  28. Maricle BR, Lee RW (2002) Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquat Bot 74:109–120CrossRefGoogle Scholar
  29. Meyer RL, Risgaard-Petersen N, Allen DE (2005) Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment. Appl Environ Microbiol 71:6142–6149CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48CrossRefPubMedGoogle Scholar
  31. Nie M, Wang M, Li B (2009) Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China. Ecol Eng 35:1804–1808CrossRefGoogle Scholar
  32. Nie SA, Li H, Yang XR, Zhang ZJ, Weng BS, Huang FY, Zhu GB, Zhu YG (2015) Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME J 9:2059–2067CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pedersen O, Borum J, Duarte CM, Fortes MD (1998) Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar Ecol Prog Ser 169:283–288CrossRefGoogle Scholar
  34. Pennings SC (2012) The big picture of marsh loss. Nature 400:352–353CrossRefGoogle Scholar
  35. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  36. Risgaard-Petersen N, Meyer RL, Schmidt M, Jetten MSM, Prast AE, Rysgaard S, Revsbech NP (2004) Anaerobic ammonia oxidation an estuarine sediment. Aquat Microb Ecol 36:293–304CrossRefGoogle Scholar
  37. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schmid MC, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten MSM, Metzger J, Schleifer K, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106CrossRefPubMedGoogle Scholar
  39. Schmid MC, Maas B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B, van Niftrik L, Schmidt I, Cirpus I, Kuenen JG, Wagner M, Damste JSS, Kuypers M, Revsbech NP, Mendez R, Jetten MSM, Strous M (2005) Bio-markers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71:1677–1684CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, Op den Camp HJM, Jetten MSM (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9:1476–1484CrossRefPubMedGoogle Scholar
  41. Sousa AI, Lillebø AI, Caçador I, Pardal MA (2008) Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems. Environ Pollut 156:628–635CrossRefPubMedGoogle Scholar
  42. Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new Planctomycete. Nature 400:446–449CrossRefPubMedGoogle Scholar
  43. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes H, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794CrossRefPubMedGoogle Scholar
  44. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  45. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318CrossRefPubMedPubMedCentralGoogle Scholar
  46. Thomas F, Giblin AE, Cardon ZG, Sievert SM (2014) Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front Microbiol 5:309PubMedPubMedCentralGoogle Scholar
  47. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  48. Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in sediments along the Thames Estuary, United Kingdom. Appl Environ Microbiol 69:6447–6454CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wan SW, Qin P, Liu JN, Zhou HX (2009) The positive and negative effects of exotic Spartina alterniflora in China. Ecol Eng 35:444–452CrossRefGoogle Scholar
  50. Wang RZ, Yuan L, Zhang LQ (2010) Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China. Ecol Eng 36:799–806CrossRefGoogle Scholar
  51. Wang S, Zhu GB, Peng YZ, Jetten MSM, Yin C (2012) Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pear River Estuary. Environ Sci Technol 46:8834–8842CrossRefPubMedGoogle Scholar
  52. Wang HT, Su JQ, Zheng TL, Yang XR (2015) Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soils Sediments 15:1212–1223CrossRefGoogle Scholar
  53. Yin GY, Hou LJ, Liu M, Liu ZF, Gardner WS (2014) A novel membrane inlet mass spectrometer method to neasure 15NH4 + for isotope-enrichment experiments in aquatic ecosystems. Environ Sci Technol 48:9555–9562CrossRefPubMedGoogle Scholar
  54. Zhang QF, Peng JJ, Chen Q, Li XF, Xu CY, Yin HB, Yu S (2011) Impacts of Spartina alterniflora invasion on abundance and composition of ammonia oxidizers in estuarine sediment. J Soils Sediments 11:1020–1031CrossRefGoogle Scholar
  55. Zheng YL, Hou LJ, Newell S, Liu M, Zhou JL, Zhao H, You LL, Cheng XL (2014) Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze Estuary. Appl Environ Microbiol 80:408–419CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhu GB, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten MSM (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5:1905–1912CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhu GB, Wang S, Wang W, Wang Y, Zhou L, Jiang B, Op den Camp HJM, Risgaard-Petersen N, Schwark L, Peng Y, Hefting MM, Jetten MSM, Yin C (2013) Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci 6:103–107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yanling Zheng
    • 1
    • 2
  • Lijun Hou
    • 2
  • Min Liu
    • 1
  • Guoyu Yin
    • 1
    • 2
  • Juan Gao
    • 2
  • Xiaofen Jiang
    • 2
  • Xianbiao Lin
    • 1
  • Xiaofei Li
    • 1
  • Chendi Yu
    • 2
  • Rong Wang
    • 2
  1. 1.College of Geographical SciencesEast China Normal UniversityShanghaiChina
  2. 2.State Key Laboratory of Estuarine and Coastal ResearchEast China Normal UniversityShanghaiChina

Personalised recommendations