Skip to main content

Advertisement

Log in

Evaluation of technological properties of Enterococcus faecium CECT 8849, a strain isolated from human milk, for the dairy industry

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, a variety of biochemical properties of Enterococcus faecium CECT 8849, which had been isolated from breast milk, were analyzed. Its acidifying capacity and proteolytic activity were low but, in contrast, remarkable peptidase and esterase activities were observed. Ethanol and 3-hydroxy-2-butanone were the most abundant volatile compounds found in experimental model cheese manufactured with E. faecium CECT 8849. This strain inhibited the growth of several Listeria monocytogenes and Listeria innocua strains in vitro. Enterocin A and B structural genes were detected in E. faecium CECT 8849. Model fermented milk and cheeses were manufactured from milk inoculated or not with L. innocua CECT 8848 (2.5–3 log10 colony forming units mL−1) using E. faecium CECT 8849 or Lactococcus lactis ESI 153 as starter cultures. Although E. faecium CECT 8849 controlled Listeria growth in both dairy models, it led to lower reduction in Listeria counts when compared with L. lactis ESI 153.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abeijón MC, Medina RB, Katz MB, González SN (2006) Technological properties of Enterococcus faecium isolated from ewe’s milk and cheese with importance for flavour development. Can J Microbiol 52:237–245 Erratum in: Can J Microbiol 52:913

    Article  PubMed  Google Scholar 

  • Alonso-Calleja C, Carballo J, Capita R, Bernardo A, García-López ML (2002) Comparison of the acidifying activity of Lactococcus lactis subsp. lactis strains isolated from goat’s milk and Valdeteja cheese. Lett Appl Microbiol 34:134–138

    Article  CAS  PubMed  Google Scholar 

  • Andrighetto C, Knijff E, Lombardi A, Torriani S, Vancanneyt M, Kersters K, Swings J, Dellaglio F (2001) Phenotypic and genetic diversity of enterococci isolated from Italian cheeses. J Dairy Res 68:303–316

    Article  CAS  PubMed  Google Scholar 

  • Arizcun C, Barcina Y, Torre P (1997) Identification and characterization of proteolytic activity of Enterococcus spp. isolated from milk and Roncal and Idiazabal cheese. Int J Food Microbiol 38:17–24

    Article  CAS  PubMed  Google Scholar 

  • Ayad EHE, Verheul A, de Jong C, Wouters JTM, Smit G (1999) Flavour forming abilities and amino acid requirements of Lactococcus lactis strains isolated from artisanal and non-dairy origin. Int Dairy J 9:725–735

    Article  CAS  Google Scholar 

  • Ayad EHE, Verheul A, Wouters JTM, Smit G (2000) Application of wild starter cultures for flavour development in pilot plant cheese making. Int Dairy J 10:169–179

    Article  CAS  Google Scholar 

  • Baele M, Devriese LA, Haesebrouck F (2001) Lactobacillus agilis is an important component of the pigeon crop flora. J Appl Microbiol 91:488–491

    Article  CAS  PubMed  Google Scholar 

  • Barker C, Park SF (2001) Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Appl Environ Microbiol 67:1594–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels HJ, Johnson ME, Olson NF (1987) Accelerated ripening of Gouda cheese. I. Effect of heat-shocked thermophilic lactobacilli and streptococci on proteolysis and flavor development. Milchwissenschaft 42:83–88

    CAS  Google Scholar 

  • Benoist P, Schwencke J (1990) Native agarose-polyacrylamide gel electrophoresis allowing the detection of aminopeptidase, dehydrogenase, and esterase activities at the nanogram level: enzymatic patterns in some Frankia strains. Anal Biochem 187:337–344

    Article  CAS  PubMed  Google Scholar 

  • Bonsaglia ECR, Silva NCC, Fernades A Jr, Araújo JP Jr, Tsunemi MH, Rall VLM (2014) Production of biofilm by Listeria monocytogenes in different materials and temperatures. Food Control 35:386–391

    Article  CAS  Google Scholar 

  • Brandão A, Almeida T, Muñoz-Atienza E, Torres C, Igrejas G, Hernández PE, Cintas LM, Poeta P, Herranz C (2010) Antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. of human and animal origin isolated in Portugal. Arch Microbiol 192:927–936

    Article  PubMed  Google Scholar 

  • Callon C, Retureau E, Didienne R, Montel MC (2014) Microbial biodiversity in cheese consortia and comparative Listeria growth on surfaces of uncooked pressed cheeses. Int J Food Microbiol 174:98–109

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas N, Calzada J, Peirotén A, Jiménez E, Escudero R, Rodríguez JM, Medina M, Fernández L (2014a) Development of a potential probiotic fresh cheese using two Lactobacillus salivarius strains isolated from human milk. Biomed Res Int 2014:801918

  • Cárdenas N, Martín V, Delgado S, Rodríguez JM, Fernández L (2014b) Characterisation of Lactobacillus gastricus strains isolated from human milk. Int Dairy J 39:167–177

    Article  Google Scholar 

  • Centeno JA, Menéndez S, Hermida M, Rodríguez-Otero JL (1999) Effects of the addition of Enterococcus faecalis in Cebreiro cheese manufacture. Int J Food Microbiol 48:97–111

    Article  CAS  PubMed  Google Scholar 

  • Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76:217–246

    Article  CAS  PubMed  Google Scholar 

  • Church HE, Swaisgood FC, Porter DH, Catignain GL (1983) Spectrophometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci 66:1219–1227

    Article  CAS  Google Scholar 

  • Cogan TM, Barbosa M, Beuvier E, Bianchi-Salvadori B, Cocconcelli PS, Fernandez I, Gomez J, Gomenz R, Kalantzopoulos G, Ledda A, Medina M, Rea MC, Rodriguez E (1997) Characterization of the lactic acid bacteria in artisanal dairy products. J Dairy Res 64:409–421

    Article  CAS  Google Scholar 

  • Cogan TM, Beresford TP, Steele J, Broadbent J, Shah NP, Ustunol Z (2007) Invited review: advances in starter cultures and cultured foods. J Dairy Sci 90:4005–4021

    Article  CAS  PubMed  Google Scholar 

  • European Centre for Disease Prevention and Control (ECDC) (2013) Annual Epidemiological Report 2013. Reporting on 2011 surveillance data and 2012 epidemic intelligence data. ECDC, Stockholm. ISBN 978–92–9193-543-7.

  • Favaro L, Basaglia M, Casella S, Hue I, Dousset X, Gombossy de Melo Franco BD, Todorov SD (2014) Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese. Food Microbiol 38:228–239

    Article  CAS  PubMed  Google Scholar 

  • Fenster KM, Rankin SA, Steele JL (2003) Accumulation of short n-chain ethyl esters by esterases of lactic acid bacteria under conditions simulating ripening parmesan cheese. J Dairy Sci 86:2818–2825

    Article  CAS  PubMed  Google Scholar 

  • Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, Rodríguez JM (2012) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69:1–10

    Article  PubMed  Google Scholar 

  • Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  PubMed  Google Scholar 

  • Franz CM, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods: a conundrum for food safety. Int J Food Microbiol 88:105–122

    Article  CAS  PubMed  Google Scholar 

  • Franz CM, van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310

    Article  CAS  PubMed  Google Scholar 

  • Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125–140

    Article  CAS  PubMed  Google Scholar 

  • Giraffa G (2002) Enterococci from foods. FEMS Microbiol Rev 26:163–171

    Article  CAS  PubMed  Google Scholar 

  • Goullet P, Picard B (1995) The electrophoretic polymorphism of bacterial esterases. FEMS Microbiol Rev 16:7–31

    Article  CAS  Google Scholar 

  • Heikkilä MP, Saris PEJ (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 95:471–478

    Article  PubMed  Google Scholar 

  • Holland R, Coolbear T (1996) Purification of tributyrin esterase from Lactococcus lactis subsp. cremoris. J Dairy Res 63:131–140

    Article  CAS  PubMed  Google Scholar 

  • Holland R, Liu S-Q, Crow VL, Delabre M-L, Lubbers M, Bennett M, Norris G (2005) Esterases of lactic acid bacteria and cheese flavor: milk fat hydrolysis, alcoholysis and esterification. Int Dairy J 15:711–718

    Article  CAS  Google Scholar 

  • Jiménez E, Ladero V, Chico I, Maldonado-Barragán A, López M, Martín V, Fernández L, Fernández M, Álvarez MA, Torres C, Rodríguez JM (2013) Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiol 13:288

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz M, Medina R, González S, Oliver G (2002) Esterolytic and lipolytic activities of lactic acid bacteria isolated from ewe’s milk and cheese. J Food Prot 65:1997–2001

    CAS  PubMed  Google Scholar 

  • Kieronczyk A, Skeie S, Langsrud T, Yvon M (2003) Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids. Appl Environ Microbiol 69:734–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus diversity, origins in nature, and gut colonization. In: Gilmore MS, Clewell DB, Ike Y et al, editors. Enterococci: from commensals to leading causes of drug resistant infection [internet]. Boston: Massachusetts Eye and Ear Infirmary. Available from: http://www.ncbi.nlm.nih.gov/books/NBK190427/

  • Magnusson J, Schnürer J (2001) Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl Environ Microbiol 67:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Xaus J, Fernández L, Rodríguez JM (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143:754–758

    Article  PubMed  Google Scholar 

  • Molimard P, Spinnler HE (1996) Review: compounds involved in the flavour of surface mold-ripened cheeses: origins and properties. J Dairy Sci 79:169–184

    Article  CAS  Google Scholar 

  • Mundy LM, Sahm DF, Gilmore M (2000) Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nes IF, Diep DB, Ike Y (2014) Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In: Gilmore MS, Clewell DB, Ike Y et al, editors. Enterococci: from commensals to leading causes of drug resistant infection [internet]. Boston: Massachusetts Eye and Ear Infirmary. Available from: http://www.ncbi.nlm.nih.gov/books/NBK190428/

  • Nieto-Arribas P, Seseña S, Poveda JM, Chicón R, Cabezas L, Palop L (2011) Enterococcus populations in artisanal Manchego cheese: biodiversity, technological and safety aspects. Food Microbiol 28:891–899

    Article  PubMed  Google Scholar 

  • Ogier J-C, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126:291–301

    Article  CAS  PubMed  Google Scholar 

  • Oliszewski R, Medina RB, González SN, Pérez Chaia AB (2007) Esterase activities of indigenous lactic acid bacteria from Argentinean goats’ milk and cheeses. Food Chem 101:1446–1450

    Article  CAS  Google Scholar 

  • Ouzari H, Hassen A, Najjari A, Ettoumi B, Daffonchio D, Zagorec M, Boudabous A, Mora D (2006) A novel phenotype based on esterase electrophoretic polymorphism for the differentiation of Lactococcus lactis ssp. lactis and cremoris. Let Appl Microbiol 43:351–359

    Article  CAS  Google Scholar 

  • Park SK, Gibbs BF, Lee BH (1995) Effects of crude enzyme of Lactobacillus casei LLG on water-soluble peptides of enzyme-modified cheese. Food Res Int 28:43–49

    Article  CAS  Google Scholar 

  • Peláez C, Requena T (2005) Exploiting the potential of bacteria in the cheese ecosystem. Int Dairy J 15:831–844

    Article  Google Scholar 

  • Pesavento G, Calonico C, Ducci B, Magnanini A, Lo Nostro A (2014) Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese, ready-to-eat salads, ham, and raw meat. Food Microbiol 41:1–7

    Article  CAS  PubMed  Google Scholar 

  • Psoni L, Kotzamanides C, Andrighetto C, Lombardi A, Tzanetakis N, Litopoulou-Tzanetaki E (2006) Genotypic and phenotypic heterogeneity in Enterococcus isolates from Batzos, a raw goat milk cheese. Int J Food Microbiol 109:109–120

    Article  CAS  PubMed  Google Scholar 

  • RASFF 2016: https://webgate.ec.europa.eu/rasff-window/portal/; Last accessed: February 3, 2016.

  • Reviriego C, Eaton T, Martín R, Jiménez E, Fernández L, Gasson MJ, Rodríguez JM (2005) Screening of virulence determinants in Enterococcus faecium isolated from breast milk. J Human Lact 21:131–137

    Article  Google Scholar 

  • Rodríguez E, Gaya P, Nuñez M, Medina M (1998) Inhibitory activity of a nisin-producing starter culture on Listeria innocua in raw ewes milk Manchego cheese. Int J Food Microbiol 39:129–132

    Article  PubMed  Google Scholar 

  • Rodríguez E, González B, Gaya P, Nuñez M, Medina M (2000) Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. Int Dairy J 10:7–15

    Article  Google Scholar 

  • Rodríguez E, Calzada J, Arqués JL, Rodríguez JM, Núñez M, Medina M (2005) Antimicrobial activity of pediocin-producing Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese. Int Dairy J 15:51–57

    Article  Google Scholar 

  • Sarantinopoulos P, Angrighetto C, Georgalaki MD, Rea MC, Lombardi A, Cogan TM, Kalantzopoulos G, Tsakalidou E (2001) Biochemical properties of enterococci relevant to their technological performance. Int J Food Microbiol 11:621–647

    CAS  Google Scholar 

  • Smit G, Smit BA, Engels WJM (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29:591–610

    Article  CAS  PubMed  Google Scholar 

  • Sousa MJ, Ardo Y, McSweeney PLH (2001) Advances in the study of proteolysis during cheese ripening. Int Dairy J 11:327–345

    Article  CAS  Google Scholar 

  • Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek 70:331–345

    Article  CAS  PubMed  Google Scholar 

  • Tsakalidou E, Manolopoulou E, Kabaraki E, Zoidou E, Pot B, Kersters K, Kalantzopoulos G (1994) The combined use of whole-cell protein extracts for the identification (SDS-PAGE) and enzyme activity screening of lactic acid bacteria isolated from traditional Greek dairy products. Syst Appl Microbiol 17:444–458

    Article  CAS  Google Scholar 

  • Urbach G (1997) The flavor of milk and dairy products. 2. Cheese: contribution of volatile compounds. Int J Dairy Technol 50:79–89

    Article  CAS  Google Scholar 

  • Van Tyne D, Gilmore MS (2014) Friend turned foe: evolution of enterococcal virulence and antibiotic resistance. Annu Rev Microbiol 68:337–356

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonides Fernández.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the FUN-C-FOOD (Consolider-Ingenio 2010) and AGL2007-62042 projects from the Ministerio de Educación y Ciencia (Spain).

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, N., Arroyo, R., Calzada, J. et al. Evaluation of technological properties of Enterococcus faecium CECT 8849, a strain isolated from human milk, for the dairy industry. Appl Microbiol Biotechnol 100, 7665–7677 (2016). https://doi.org/10.1007/s00253-016-7616-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7616-3

Keywords