Applied Microbiology and Biotechnology

, Volume 100, Issue 17, pp 7751–7763 | Cite as

Microbial diversity and community structure in an antimony-rich tailings dump

Environmental biotechnology

Abstract

To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.

Keyword

Illumina sequencing Antimony Sulfur-oxidizing bacteria Canonical correspondence analysis 

Supplementary material

253_2016_7598_MOESM1_ESM.pdf (224 kb)
ESM 1(PDF 223 kb)

References

  1. Anderson CG (2012) The metallurgy of antimony. Chem Erde – Geoche 72:3–8CrossRefGoogle Scholar
  2. Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204CrossRefPubMedPubMedCentralGoogle Scholar
  3. Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cai Y, Li L, Zhang H (2015) Kinetic modeling of pH-dependent antimony(V) sorption and transport in iron oxidecoated sand. Chemosphere 138:758–764. doi:10.1016/j.chemosphere.2015.07.067 CrossRefPubMedGoogle Scholar
  5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, Shu WS (2013) Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol 15:2431–44. doi:10.1111/1462-2920.12114 CrossRefPubMedGoogle Scholar
  7. Claus G, Kutzner HJ (1985) Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl Microbiol Biotechnol 22:283–288Google Scholar
  8. Communities of the Europe (1976) Council directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the community.Google Scholar
  9. Diaby N, Dold B, Pfeifer HR, Holliger C, Johnson DB, Hallberg KB (2007) Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol 9:298–307. doi:10.1111/j.1462-2920.2006.01138.x CrossRefPubMedGoogle Scholar
  10. Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55Google Scholar
  11. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Method 10:996–998Google Scholar
  12. Edraki M, Baumgartl T, Manlapig E, Bradshaw D, Franks DM, Moran CJ (2014) Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. J Clean Prod 84:411–420. doi:10.1016/j.jclepro.2014.04.079 CrossRefGoogle Scholar
  13. Fawcett SE, Jamieson HE (2011) The distinction between ore processing and post-depositional transformation on the speciation of arsenic and antimony in mine waste and sediment. Chem Geol 283:109–118. doi:10.1016/j.chemgeo.2010.02.019 CrossRefGoogle Scholar
  14. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631CrossRefPubMedPubMedCentralGoogle Scholar
  15. Filella M, Belzile N, Chen Y-W (2002) Antimony in the environment: a review focused on natural waters I. Occurrence Earth-Sci Rev 57:125–176CrossRefGoogle Scholar
  16. Fornieles AC, de Torres AG, Alonso EV, Cordero MS, Pavón JC (2011) Speciation of antimony (III) and antimony (V) in seawater by flow injection solid phase extraction coupled with online hydride generation inductively coupled plasma mass spectrometry. J Anal At Spectrom 26:1619–1626CrossRefGoogle Scholar
  17. Fowler B, Goering P (1991) Antimony. Metals and their compounds in the environment: occurrence, analysis, and biological relevance. Weinheim, pp:743–750Google Scholar
  18. Garcia CA, Lopez A, Ballester M, Blazquez M, Gonzalez F (2001) Microbial succession during wethering of pyritic tailings: column mode. Miner Eng 14:861–876CrossRefGoogle Scholar
  19. Gault AG, Polya DA, Charnock JM, Islam FS, Lloyd JR, Chatterjee D (2003) Preliminary EXAFS studies of solid phase speciation of As in a West Bengali sediment. Mineral Mag 67:1183–1191. doi:10.1180/0026461036760157 CrossRefGoogle Scholar
  20. Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hur M, Kim Y, Song H-R, Kim JM, Im Choi Y, Yi H (2011) Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl Environ Microbiol 77:7611–7619CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jensen AB, Webb C (1995) Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem 30:225–236CrossRefGoogle Scholar
  24. Johnson M, Bradshaw A (1977) Prevention of heavy metal pollution from mine wastes by vegetative stabilization. Trans Inst Min Metall 86:47–55Google Scholar
  25. Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70:1777–1786CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kimbrough DE, Wakakuwa JR (2002) Acid digestion for sediments, sludges, soils, and solid wastes. a proposed alternative to EPA SW 846 Method 3050. Environ Sci Technol 25:898–900Google Scholar
  27. Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7Google Scholar
  28. Kondratyeva TF, Muntyan LN, Karavaiko GI (1995) Zinc-and arsenic-resistant strains of Thiobacillus ferrooxidans have increased copy numbers of chromosomal resistance genes. Microbiology 141:1157–1162CrossRefGoogle Scholar
  29. Krzaklewski W, Pietrzykowski M (2002) Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water Air Soil Pollut 141:125–141CrossRefGoogle Scholar
  30. Kuang J-L, Huang L-N, Chen L-X, Hua Z-S, Li S-J, Hu M, Li J-T, Shu W-S (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050CrossRefPubMedGoogle Scholar
  31. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol. doi:10.1002/0471250953.bi1007s36 PubMedPubMedCentralGoogle Scholar
  32. Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus–masters of catabolic versatility. Curr Opin Biotechnol 16:282–290CrossRefPubMedGoogle Scholar
  33. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, UKGoogle Scholar
  34. Leuz A-K, Mönch H, Johnson CA (2006) Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environ Sci Technol 40:7277–7282. doi:10.1021/es061284b CrossRefPubMedGoogle Scholar
  35. Li J, Sun W, Wang S, Sun Z, Lin S, Peng X (2014) Bacteria diversity, distribution, and insight into their role in S and Fe biogeochemical cycling during black shale weathering. Environ Microbiol 16:3533–3547CrossRefPubMedGoogle Scholar
  36. Lu H, Sato Y, Fujimura R, Nishizawa T, Kamijo T, Ohta H (2011) Limnobacter litoralis sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from a volcanic deposit, and emended description of the genus Limnobacter. Int J Syst Evol Microbiol 61:404–407Google Scholar
  37. Luo G, Shi Z, Wang G (2012) Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 62:1659–1665Google Scholar
  38. Margesin R, Labbe D, Schinner F, Greer C, Whyte L (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092CrossRefPubMedPubMedCentralGoogle Scholar
  39. McBeth JM, Fleming EJ, Emerson D (2013) The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine. USA Env Microbiol Rep 5:453–463. doi:10.1111/1758-2229.12033 CrossRefGoogle Scholar
  40. Medeiros JD, Leite LR, Cuadros-Orellana S, Oliveira G (2015) Taxonomic and functional diversity of microbial community from a mining environment. BMC Bioinforma 16:A3CrossRefGoogle Scholar
  41. Navarro-Noya YE, Jan-Roblero J, del Carmen González-Chávez M, Hernández-Gama R, Hernández-Rodríguez C (2010) Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Anton Leeuw Int J G 97:335–349CrossRefGoogle Scholar
  42. Ning Z, Xiao T, Xiao E (2015) Antimony in the soil-plant system in an Sb mining/smelting area of southwest China. Int J Phytoremediat 17:1081–1089CrossRefGoogle Scholar
  43. Radeva G, Kenarova A, Bachvarova V, Flemming K, Popov I, Vassilev D, Selenska-Pobell S (2013) Bacterial diversity at abandoned uranium mining and milling sites in Bulgaria as revealed by 16S rRNA genetic diversity study. Water Air Soil Pollut 224:1–14CrossRefGoogle Scholar
  44. Ritchie VJ, Ilgen AG, Mueller SH, Trainor TP, Goldfarb RJ (2013) Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve. Alaska Chem Geol 335:172–188. doi:10.1016/j.chemgeo.2012.10.016 CrossRefGoogle Scholar
  45. Rueda-Holgado F, Bernalte E, Palomo-Marin M, Calvo-Blazquez L, Cereceda-Balic F, Pinilla-Gil E (2012) Miniaturized voltammetric stripping on screen printed gold electrodes for field determination of copper in atmospheric deposition. Talanta 101:435–439CrossRefPubMedGoogle Scholar
  46. Savonina EY, Fedotov PS, Wennrich R (2012) Fractionation of Sb and As in soil and sludge samples using different continuous-flow extraction techniques. Anal Bioanal Chem 403:1441–1449. doi:10.1007/s00216-012-927-5 CrossRefPubMedGoogle Scholar
  47. Schippers A (2004) Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. Geol Soc Am Spec Pap 379:49–62. doi:10.1130/0-8137-2379-5.49 Google Scholar
  48. Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright T (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxidizing bacteria. Hydrometallurgy 104:342–350CrossRefGoogle Scholar
  49. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522CrossRefPubMedGoogle Scholar
  51. Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center, United State EPAGoogle Scholar
  52. Sekiguchi Y, Muramatsu M, Imachi H, Narihiro T, Ohashi A, Harada H, Hanada S, Kamagata Y (2008) Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. Int J Syst Evol Microbiol 58:2541–2548Google Scholar
  53. Smith NA, Kelly DP (1988) Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gener Microbiol 134:3041–3048Google Scholar
  54. Spring S, Kämpfer P, Schleifer KH (2001) Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 51:1463–1470Google Scholar
  55. Sun M, Xiao T, Ning Z, Xiao E, Sun W (2015a) Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Appl Microbiol Biotechnol 99:2911–2922CrossRefPubMedGoogle Scholar
  56. Sun W, Dong Y, Gao P, Fu M, Ta K, Li J (2015b) Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: implications for active petroleum-degrading capacity. J Microbiol 53:371–378CrossRefPubMedGoogle Scholar
  57. Sun W, Li J, Jiang L, Sun Z, Fu M, Peng X (2015c) Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. Appl Microbiol Biotechnol 99:8751–8764CrossRefPubMedGoogle Scholar
  58. Sun W, Xiao T, Sun M, Dong Y, Ning Z, Xiao E, Tang S, Li J (2015d) Diversity of the sediment microbial community in the Aha watershed (Southwest China) in response to acid mine drainage pollution gradients. Appl Environ Microbiol 81:4874–4884CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sun W, Xiao E, Dong Y, Tang S, Krumins V, Ning Z, Sun M, Zhao Y, Wu S, Xiao T (2016) Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Sci Tot Environ 550:297–308CrossRefGoogle Scholar
  60. Tighe M, Lockwood P, Wilson S (2005) Adsorption of antimony(v) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J Environ Monitor 7:1177–1185. doi:10.1039/b508302h CrossRefGoogle Scholar
  61. Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387CrossRefPubMedGoogle Scholar
  62. USEPA (1979) Water related fate of the 129 priority pollutants. USEPA, WashingtonGoogle Scholar
  63. Vanden Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. BBA-Biomembranes 1656:148–155PubMedGoogle Scholar
  64. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  65. Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63:1405–1419. doi:10.1016/S0016-7037(99)00031-9 CrossRefGoogle Scholar
  66. Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323. doi:10.1016/S0003-2670(01)00924-2 CrossRefGoogle Scholar
  67. Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158:1169–1181CrossRefPubMedGoogle Scholar
  68. Zhang N, Wan S, Li L, Bi J, Zhao M, Ma K (2008) Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant Soil 311:19–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Enzong Xiao
    • 1
    • 2
  • Valdis Krumins
    • 3
  • Yiran Dong
    • 4
  • Tangfu Xiao
    • 1
    • 5
  • Zengping Ning
    • 1
  • Qingxiang Xiao
    • 1
    • 2
  • Weimin Sun
    • 1
    • 6
    • 7
  1. 1.State Key Laboratory of Environmental GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Environmental SciencesRutgers UniversityNew BrunswickUSA
  4. 4.Department of GeologyUniversity of Illinois-Urbana ChampaignUrbanaUSA
  5. 5.Innovation Center and Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of EducationGuangzhou UniversityGuiyangPeople’s Republic of China
  6. 6.Department of Microbiology and BiochemistryRutgers UniversityNew BrunswickUSA
  7. 7.Guangdong Institute of Eco-environment and Soil SciencesGuangzhouChina

Personalised recommendations