Skip to main content
Log in

The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Filamentous fungi are attractive hosts for heterologous protein expression due to their capacity to secrete large amounts of enzymes into the extracellular medium. Xyloglucanases, which specifically hydrolyze xyloglucan, have been recently applied in lignocellulosic biomass degradation and conversion in many other industrial processes. In this context, this work aimed to clone, express, and determine the functional properties of a recombinant xyloglucanase (AtXEG12) from Aspergillus terreus, and also its solid-state (SSF) and submerged (SmF) fermentation in bioreactors. The purified AtXEG12 showed optimum pH and temperature of 5.5 and 65 °C, respectively, demonstrating to be 90 % stable after 24 h of incubation at 50 °C. AtXEG12 activity increased in the presence of 2-mercaptoethanol (65 %) and Zn+2 (45 %), while Cu+2 and Ag+ ions drastically decreased its activity. A substrate assay showed, for the first time for this enzyme’s family, xylanase activity. The enzyme exhibited high specificity for tamarind xyloglucan (K M 1.2 mg mL−1) and V max of 17.4 μmol min−1 mg−1 of protein. The capillary zone electrophoresis analysis revealed that AtXEG12 is an endo-xyloglucanase. The heterologous xyloglucanase secretion was greater than the production by wild-type A. terreus cultivated in SmF. On the other hand, AtXEG12 activity reached by SSF was sevenfold higher than values achieved by SmF, showing that the expression of recombinant enzymes can be significantly improved by cultivation under SSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barratt RW, Johnson GB, Ogata WN (1965) Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52:233–246

  • Bauer S, Vasu P, Mort AJ, Somerville CR (2005) Cloning, expression, and characterization of an oligoxyloglucan reducing end-specific xyloglucanobiohydrolase from Aspergillus nidulans. Carbohydr Res 340(17):2590–2597

    Article  CAS  PubMed  Google Scholar 

  • Borin GP, Sanchez CC, De Souza AP, Santana ES, Souza AT, Leme AFP, Squina FM, Buckeridge MS, Goldman GH, Oliveira JVC (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS ONE 10(6):e0129275

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buckeridge MS, Rocha DC, Reid JSG, Dietrich SMC (1992) Xyloglucan structure and post-germinative metabolism in seeds of Copaifera langsdorffii from savanna and forest populations. Physiol Plant 86:145–151

    Article  CAS  Google Scholar 

  • Buckeridge MS, dos Santos WD, Tiné MAS, De Souza AP (2015) The cell wall architecture of sugarcane and its implication to cell wall recalcitrance. In: Lam E, Carrer H, da Silva JA, Kole C (eds) Compendium of bioenergy crops for science publishers. CRC Press of Taylor and Francis Group, Boca Raton, Florida, pp. 31–50

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Mccann MC (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, Maryland, pp. 52–109

    Google Scholar 

  • Damasio ARL, Silva TM, Almeida FBR, Squina FM, Ribeiro DA, Leme AFP, Segato F, Prade RA, Jorge JA, Terenzi HF, Polizeli MLTM (2011) Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem 46(6):1236–1242

    Article  CAS  Google Scholar 

  • Damasio ARL, Ribeiro LFC, Ribeiro LF, Furtado GP, Segato F, Almeida FBR, Crivellari AC, Buckeridge MS, Souza TACB, Murakami MT, Ward RJ, Prade RA, Polizeli MLTM (2012) Functional characterization and oligomerization of a recombinant xyloglucan-specific endo-β-1,4-glucanase (GH12) from Aspergillus niveus. Biochim Biophys Acta 1824(3):461–467

    Article  CAS  PubMed  Google Scholar 

  • Damasio ARL, Rubio MV, Oliveira LC, Segato F, Dias BA, Citadini AP, Paixão DA, Squina FM (2014) Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12. Biotechnol Bioeng 111:1494–1505

    Article  CAS  PubMed  Google Scholar 

  • De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579

    Article  CAS  Google Scholar 

  • Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sust Energ Rev 52:179–188

    Article  CAS  Google Scholar 

  • Farinas CS, Vitcosque GL, Fonseca RF, Neto VB, Couri S (2011) Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor. Ind Crop Prod 34(1):1186–1192

    Article  CAS  Google Scholar 

  • Furtado GP, Santos CR, Cordeiro RL, Ribeiro LF, De Moraes LAB, Damasio ARL, Polizeli MLTM, Lourenzoni MR, Murakami MT, Ward RJ (2015) Enhanced xyloglucan-specific endo-β-1,4-glucanase efficiency in an engineered CBM44-XegA chimera. Appl Microbiol Biotechnol 99:5095–5107

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HJ, Stalbrand H, Brumer H (2008) How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 11(3):338–348

    Article  CAS  PubMed  Google Scholar 

  • Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–328

    Article  CAS  PubMed  Google Scholar 

  • Hasper AA, Dekkers E, Van Mil M, Van De Vondervoort PJ, De Graaff LH (2002) EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68:1556–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida T, Yaoi K, Hiyoshi A, Igarashi K, Samejima M (2007) Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium. FEBS J 274:5727–5736

    Article  CAS  PubMed  Google Scholar 

  • Iwashita K (2002) Recent studies of protein secretion by filamentous fungi—review. J Biosci Bioeng 94:530–535

    Article  CAS  PubMed  Google Scholar 

  • Knob A, Beitel SM, Fortkamp D, Terrasan CRF, de Almeida AF (2013) Production, purification, and characterization of a major Penicillium glabrum xylanase using brewer's spent grain as substrate. Biomed Res Int 2013:728735 . doi:10.1155/2013/7287358 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Korona B, Korona D, Bielecki S (2006) Efficient expression and secretion of two co-produced xylanases from Aspergillus niger in Pichia pastoris directed by their native signal peptides and the Saccharomyces cerevisiae α-mating factor. Enzym Microb Technol 39(4):683–689

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Thornton JM (1998) Validation of protein models derived from experiment. Curr Opin Struct Biol 8:631–639

    Article  CAS  PubMed  Google Scholar 

  • Lerouxel O, Choo TS, Seveno M, Usadel B, Faye L, Lerouge P, Pauly M (2002) Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol 130:1754–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima DU, Buckeridge MS (2001) Interaction between cellulose and storage xyloglucans: the influence of degree of galactosylation. Carbohydr Polym 46(2):157–163

    Article  Google Scholar 

  • Master ER, Zheng Y, Storms R, Tsang A, Powlowski J (2008) A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: recombinant expression, purification and characterization. Biochem J 411:161–170

    Article  CAS  PubMed  Google Scholar 

  • Mathew GM, Sukumaran RK, Singhania RR, Pandey A (2008) Progress in research on fungal cellulases for lignocellulose degradation. J Sci Ind Res 67:898–907

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustainable Chem Processes 1:15–27

    Article  Google Scholar 

  • Naran R, Pierce ML, Mort AJ (2007) Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons. Plant J 50:95–107

    Article  CAS  PubMed  Google Scholar 

  • Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    Article  CAS  PubMed  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Powlowski J, Mahajan S, Schapira M, Master ER (2009) Substrate recognition and hydrolysis by a fungal xyloglucan-specific family 12 hydrolase. Carbohydr Res 344:1175–1179

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Schantz LV, Gullfot F, Scheer S, Filonova L, Gunnarsson LC, Flint JE, Daniel G, Nordberg-Karlsson E, Brumer H, Ohlin M (2009) Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules. BMC Biotechnol 9:92–104

    Article  Google Scholar 

  • Segato F, Damasio ARL, Goncalves TA, De Lucas RC, Squina FM, Decker SR, Prade RA (2012) High-yield secretion of multiple client proteins in Aspergillus. Enzym Microb Technol 51:100–106

    Article  CAS  Google Scholar 

  • Selig MJ, Knoshaug EP, Decker SR, Baker JO, Himmel ME, Adney WS (2008) Heterologous expression of Aspergillus niger β-D-xylosidase (XlnD): characterization on lignocellulosic substrates. Appl Biochem Biotechnol 146:57–68

    Article  CAS  PubMed  Google Scholar 

  • Serpa VI, Polikarpov I (2011) Enzymes in bioenergy. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp. 97–113

    Chapter  Google Scholar 

  • Song S, Tang Y, Yang S, Yan Q, Zhou P, Jiang Z (2013) Characterization of two novel family 12 xyloglucanases from the thermophilic Rhizomucor miehei. Appl Microbiol Biotechnol 97(23):10013–10024

    Article  CAS  PubMed  Google Scholar 

  • Sugano Y, Matsuo C, Shoda M (2001) Efficient production of a heterologous peroxidase, DyP from Geotrichum candidum Dec1, on solid-state culture of Aspergillus oryzae RD005. J Biosci Bioeng 92(6):594–597

    Article  CAS  PubMed  Google Scholar 

  • Téllez-Jurado A, Arana-Cuenca A, González Becerra AE, Viniegra-González G, Loera O (2006) Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzym Microb Technol 38:665–669

    Article  Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabickyzissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221

    Article  CAS  PubMed  Google Scholar 

  • Tiné MAS, Lima DU, Buckeridge MS (2003) Galactose branching modulates the action of cellulase on seed storage xyloglucans. Carbohydr Polym 52:135–141

    Article  Google Scholar 

  • Tiné MAS, Silva CO, Lima DU, Carpita NC, Buckeridge MS (2006) Fine structure of a mixed-oligomer storage xyloglucan from seeds of Hymenaea courbaril. Carbohydr Polym 66:444–454

    Article  Google Scholar 

  • Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139

    Article  CAS  PubMed  Google Scholar 

  • Yaoi K, Nakai T, Kameda Y, Hiyoshi A, Mitsuishi Y (2005) Cloning and characterization of two xyloglucanases from Paenibacillus sp. strain KM21. Appl Environ Microbiol 71:7670–7678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaoi K, Kondo H, Hiyoshi A, Noro N, Sugimoto H, Tsuda S, Mitsuishi Y, Miyazaki K (2007) The structural basis for the exo-mode of action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J Mol Biol 370:53–62.

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa T, Shimizu T, Hirano H, Sato M, Hashimoto H (2012) Structural basis for inhibition of xyloglucan-specific endo-β-1,4-glucanase (xeg) by xeg-protein inhibitor. J Biol Chem 287:18710–18716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho de Desenvolvimento Científico e Tecnológico (CNPq), National System for Research on Biodiversity (Sisbiota-Brazil, CNPq 563260/2010-6/FAPESP n° 2010/52322-3), and LNBio (Mass Spectrometry staff) and CTBE facilities (Capillary Electrophoresis). J.A.J. and M.L.T.M.P. are Research Fellows of CNPq. G.L.V. and L.F.C.R. were recipient FAPESP Fellowship (2013/16563-4; 2010/10184-3, respectively). A.R.L. Damasio received grants from FAPESP 2012/20549-4, and F. Segato received grants from FAPESP 2014/18714-2. We gratefully acknowledge the CNPEM facility MAS at Brazilian Biosciences National Laboratory, Ricardo Alarcon and Mauricio de Oliveira for the technical assistance, and Mariana Cereia for the language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes T. M. Polizeli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Gabriela Leal Vitcosque, Liliane Fraga Costa Ribeiro, and Rosymar Coutinho de Lucas equally contributed to this work.

Electronic supplementary material

ESM 1

(PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitcosque, G.L., Ribeiro, L.F.C., de Lucas, R.C. et al. The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Appl Microbiol Biotechnol 100, 9133–9144 (2016). https://doi.org/10.1007/s00253-016-7589-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7589-2

Keywords

Navigation