Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid


Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Andersen SJ, Hennebel T, Gildemyn S, Coma M, Desloover J, Berton J, Tsukamoto J, Stevens C, Rabaey K (2014) Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ Sci Technol 48(12):7135–7142. doi:10.1021/es500483w

    CAS  Article  PubMed  Google Scholar 

  2. Bobillo M, Marshall VM (1992) Effect of acidic pH and salt on acid end-products by Lactobacillus plantarum in aerated, glucose-limited continuous culture. J Appl Bacteriol 73(1):67–70. doi:10.1111/j.1365-2672.1992.tb04971.x

    CAS  Article  Google Scholar 

  3. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi:10.1038/nmeth.f.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Colin T, Bories A, Lavigne C, Moulin G (2001) Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Curr Microbiol 43(4):238–243. doi:10.1007/s002840010294

    CAS  Article  PubMed  Google Scholar 

  5. Costa KC, Lie TJ, Jacobs MA, Leigh JA (2013) H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis. Am Soc Microbiol 4(2):1–7. doi:10.1128/mBio.00062-13

    Google Scholar 

  6. De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Van Horen E, Soetaert WK, Vanrolleghem PA, Vandamme EJ (2007) Comparison of different strategies to reduce acetate formation in Escherichia coli. Biotechnol Prog 23(5):1053–1063. doi:10.1021/bp070170g

    PubMed  Google Scholar 

  7. De Weirdt R (2013) Dietary fat and the human gut microbiome (PhD thesis). Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium

  8. Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74(1):333–335. doi:10.1128/aem.01595-07

    CAS  Article  PubMed  Google Scholar 

  9. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. doi:10.1093/bioinformatics/btr381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Elsden SR (1945) The fermentation of carbohydrates in the rumen of the sheep. J Exp Biol 22:51–62

    CAS  PubMed  Google Scholar 

  11. Fotidis IA, Karakashev D, Kotsopoulos TA, Martzopoulos GG, Angelidaki I (2013) Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS Microbiol Ecol 83(1):38–48. doi:10.1111/j.1574-6941.2012.01456.x

    CAS  Article  PubMed  Google Scholar 

  12. GIA (2012) Lactic acid—a global strategic business report Accessed on 24 October 2014

  13. Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192(13):3345–3351. doi:10.1128/JB.00090-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Huws SA, Kim EJ, Lee MRF, Scott MB, Tweed JKS, Pinloche E, Wallace RJ, Scollan ND (2011) As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ Microbiol 13:1500–1512. doi:10.1111/j.1462-2920.2011.02452.x

    CAS  Article  PubMed  Google Scholar 

  15. Huws SA, Kim EJ, Cameron SJS, Girdwood SE, Davies L, Tweed J, Vallin H, Scollan ND (2015) Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and Echium oil. Microb Biotechnol 8(2):331–341. doi:10.1111/1751-7915.12164

    CAS  Article  PubMed  Google Scholar 

  16. Kabel MA, Yeoman CJ, Han Y, Dodd D, Abbas CA, de Bont JAM, Morrison M, Cann IKO, Mackie RI (2011) Biochemical characterization and relative expression levels of multiple carbohydrate esterases of the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate. Appl Environ Microbiol 77(16):5671–5681. doi:10.1128/aem.05321-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Khor WC, Rabaey K, Vervaeren H (2015) Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass. Bioresour Technol 176:181–188. doi:10.1016/j.biortech.2014.11.037

    CAS  Article  PubMed  Google Scholar 

  18. Lee HJ, Xie Y, Koo YM, Wang NH (2004) Separation of lactic acid from acetic acid using a four-zone SMB. Biotechnol Prog 20(1):179–192. doi:10.1021/bp025663u

    CAS  Article  PubMed  Google Scholar 

  19. Luli GW, Strohl WR (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56(4):1004–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Makkar HPS, Sharma OP, Dawra RK, Negi SS (1982) Simple determination of microbial protein in rumen liquor. J Dairy Sci 65(11):2170–2173. doi:10.3168/jds.S0022-0302(82)82477-6

    CAS  Article  PubMed  Google Scholar 

  21. McCarty PL, McKinney RE (1961) Salt toxicity in anaerobic digestion. J Water Pollut Con F 33(4):399–415 Stable URL:

  22. Oude Elferink SJWH, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67(1):125–132

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Prokopenko MG, Hirst MB, De Brabandere L, Lawrence DJ, Berelson WM, Granger J, Chang BX, Dawson S, Crane EJ 3rd, Chong L, Thamdrup B, Townsend-Small A, Sigman DM (2013) Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia. Nature 500(7461):194–198. doi:10.1038/nature12365

    CAS  Article  PubMed  Google Scholar 

  24. Quatravaux S, Remize F, Bryckaert E, Colavizza D, Guzzo J (2006) Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters. J Appl Microbiol 101(4):903–912. doi:10.1111/j.1365-2672.2006.02955.x

    CAS  Article  PubMed  Google Scholar 

  25. Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148(7):2215–2222

    CAS  Article  PubMed  Google Scholar 

  26. Rosales-Colunga LM, Martínez-Antonio A (2014) Engineering Escherichia coli K12 MG1655 to use starch. Microb Cell Factories 13:74. doi:10.1186/1475-2859-13-74

    Article  Google Scholar 

  27. Russell JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73(5):363–370. doi:10.1111/j.1365-2672.1992.tb04990.x

    CAS  Article  Google Scholar 

  28. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi:10.1128/aem.01541-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Stewardson AJ, Gaïa N, François P, Malhotra-Kumar S, Delémont C, Martinez de Tejada B, Schrenzel J, Harbarth S, Lazarevic V (2015) Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota. Clin Microbiol Infec 21(4):344.e1–344.e11. doi:10.1016/j.cmi.2014.11.016

    CAS  Article  Google Scholar 

  30. Takahashi C, Takahashi D, Carvalhal M, Alterthum F (1999) Effects of acetate on the growth and fermentation performance of Escherichia coli KO11. Appl Biochem Biotech 81(3):193–203. doi:10.1385/ABAB:81:3:193

    CAS  Article  Google Scholar 

  31. Tang IC, Okos MR, Yang S-T (1989) Effects of pH and acetic acid on homoacetic fermentation of lactate by Clostridium formicoaceticum. Biotechnol Bioeng 34(8):1063–1074. doi:10.1002/bit.260340807

    CAS  Article  PubMed  Google Scholar 

  32. Taskila S, Ojamo H (2013a) The current status and future expectations in industrial production of lactic acid by lactic acid bacteria

  33. Taskila S, Ojamo H (2013b) The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. R & D for food, health and livestock purposes, Dr. J. Marcelino Kongo (Ed.), ISBN: 978-953-51-0955-6, InTech, doi:10.5772/51282

  34. Temudo MF, Kleerebezem R, van Loosdrecht M (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 98(1):69–79. doi:10.1002/bit.21412

    CAS  Article  PubMed  Google Scholar 

  35. Thauer RK, Jungermann K, Decker K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180 URL:

  36. Thomas TD, Ellwood DC, Longyear VM (1979) Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138:109–117

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vilchez-Vargas R, Geffers R, Suarez-Diez M, Conte I, Waliczek A, Kaser VS, Kralova M, Junca H, Pieper DH (2013) Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ Microbiol 15(4):1016–1039. doi:10.1111/j.1462-2920.2012.02752.x

    CAS  Article  PubMed  Google Scholar 

  38. Wang X, Li X, Zhao C, Hu P, Chen H, Liu Z, Liu G, Wang Z (2012) Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Appl Environ Microbiol 78(7):2386–2392. doi:10.1128/aem.07545-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Zeng AP, Ross A, Biebl H, Tag C, Günzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44(8):902–911. doi:10.1002/bit.260440806

    CAS  Article  PubMed  Google Scholar 

Download references


The authors would like to thank Charlotte Melis and Professor Veerle Fievez (ILVO, UGent) for providing the rumen fluid; Marjan de Mey (UGent) for providing the E. coli strain (3KO: E. coli K12 MG1655 δ (ackA-pta) δ (poxB); Lien Saey (InBio, UGent) for the analysis using liquid chromatography; Tim Lacoere for the figure illustration; Amanda Luther for proofreading of the manuscript; Sunil Patil, Emma Hernandez Sanabria and Chiara Ilgrande (LabMET, UGent) for their support; the Department of Bioengineering, Ghent University and the Department of Industrial Biological Science, Ghent University Campus Kortrijk.

Author information



Corresponding author

Correspondence to Korneel Rabaey.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Funding information

This work was funded by Special Research Fund (BOF, project number: DEF13/AOF/010) of the University of Ghent (Belgium). The funder has no role in study design, data collection and interpretation or the decision to submit the work for publication. MC was supported by Ghent University Multidisciplinary Research Partnership (MRP) – Biotechnology for a sustainable economy (01 MRA 510W). KR and HR are supported by the European Research Council Starter Grant ELECTROTALK.

Electronic supplementary material


(XLSX 609 kb)


(PDF 620 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khor, W.C., Roume, H., Coma, M. et al. Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid. Appl Microbiol Biotechnol 100, 8337–8348 (2016).

Download citation


  • Lactic acid
  • Acetate
  • Lignocellulosic biomass
  • Mixed culture