Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 18, pp 8043–8051 | Cite as

Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates

  • Tomohiko Matsuzawa
  • Satoshi Kaneko
  • Katsuro YaoiEmail author
Biotechnologically relevant enzymes and proteins

Abstract

Trichoderma reesei Xyn III, an endo-β-1,4-xylanase belonging to glycoside hydrolase family 10 (GH10), is vital for the saccharification of xylans in plant biomass. However, its enzymatic thermostability and hydrolytic activity on insoluble substrates are low. To overcome these difficulties, the thermostability of Xyn III was improved using random mutagenesis and directed evolution, and its hydrolytic activity on insoluble substrates was improved by creating a chimeric protein. In the screening of thermostable Xyn III mutants from a random mutagenesis library, we identified two amino acid residues, Gln286 and Asn340, which are important for the thermostability of Xyn III. The Xyn III Gln286Ala/Asn340Tyr mutant showed xylanase activity even after heat treatment at 60 °C for 30 min or 50 °C for 96 h, indicating a dramatic enhancement in thermostability. In addition, we found that the addition of a xylan-binding domain (XBD) to the C-terminal of Xyn III improved its hydrolytic activity on insoluble xylan.

Keywords

Xylanase Trichoderma reesei Biomass Xylan Thermostability Xylan-binding domain 

Notes

Acknowledgments

We thank Yuko Chujo and Akiko Yamanaka (AIST) for assistance in screening of thermostable Xyn III mutants and protein purification. This work was supported in part by grants from the New Energy and Industrial Technology Development Organization (NEDO).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

253_2016_7563_MOESM1_ESM.pdf (99 kb)
ESM 1 (PDF 98 kb)

References

  1. Biely P, Vrsanská M, Claeyssens M (1991) The endo-1,4-β-glucanase I from Trichoderma reesei. Action on β-1,4-oligomers and polymers derived from d-glucose and d-xylose. Eur J Biochem 200:157–163CrossRefPubMedGoogle Scholar
  2. Biely P, Vrsanská M, Tenkanen M, Kluepfel D (1997) Endo-β-xylanase families: differences in catalytic properties. J Biotehnol 57:151–166CrossRefGoogle Scholar
  3. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23CrossRefPubMedGoogle Scholar
  4. Fenel F, Zitting AJ, Kantelinen A (2006) Increased alkali stability in Trichoderma reesei endo-1,4-β-xylanase II by site directed mutagenesis. J Biotechnol 121:102–107CrossRefPubMedGoogle Scholar
  5. Gao D, Haarmeyer C, Balan V, Whitehead TA, Dale BE, Chundawat SP (2014) Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol Biofuels 7:175CrossRefPubMedPubMedCentralGoogle Scholar
  6. Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281CrossRefPubMedGoogle Scholar
  7. Hokanson CA, Cappuccilli G, Odineca T, Bozic M, Behnke CA, Mendez M, Coleman WJ, Crea R (2011) Engineering highly thermostable xylanase variants using an enhanced combinatorial library methods. Protein Eng Des Sel 24:597–605CrossRefPubMedGoogle Scholar
  8. Jun H, Bing Y, Keying Z, Xuemei D, Daiwen C (2009) Thermostable carbohydrate binding module increases the thermostability and substrate-binding capacity of Trichoderma reesei xylanase 2. New Biotechnol 26:53–59CrossRefGoogle Scholar
  9. Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y (2012) Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomass through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39:1741–1749CrossRefPubMedGoogle Scholar
  10. Kormelink FJM, Vorage AGJ (1993) Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degradation enzymes. Appl Microbiol Biotechnol 38:688–695CrossRefGoogle Scholar
  11. Kuno A, Kaneko S, Ohtsuki H, Ito S, Fujimoto Z, Mizuno H, Hasegawa T, Taira K, Kusakabe I, Hayashi K (2000) Novel sugar-binding specificity of the type XIII xylan-binding domain of a family F/10 xylanase from Streptomyces olivaceoviridis E-86. FEBS Lett 482:231–236CrossRefPubMedGoogle Scholar
  12. Li H, Murtomäki L, Leisola M, Turunen O (2012) The effect of thermostabilising mutations on the pressure stability of Trichoderma reesei GH11 xylanase. Protein Eng Des Sel 25:821–826CrossRefPubMedGoogle Scholar
  13. Li YY, Zhong KX, Hu AH, Liu DN, Chen LZ, Xu SD (2015) High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expr Purif 108:90–96CrossRefPubMedGoogle Scholar
  14. Liao H, Zheng H, Li S, Wei Z, Mei X, Ma H, Shen Q, Xu Y (2015) Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Sci Rep 5:12631CrossRefPubMedPubMedCentralGoogle Scholar
  15. Liu Y, Huang L, Li W, Guo W, Zheng H, Wang J, Lu F (2015) Studies on properties of the xylan-binding domain and linker sequence of xylanase XynG1-1 from Paenibacillus campinasensis G1-1. J Ind Microbiol Biotechnol 42:1591–1599CrossRefPubMedGoogle Scholar
  16. Lou H, Wang M, Lai H, Lin X, Zhou M, Yang D, Qiu K (2013) Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour Technol 146:478–484CrossRefPubMedGoogle Scholar
  17. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefPubMedPubMedCentralGoogle Scholar
  18. Margolles-Clark E, Tenkanen M, Nakari-Setälä T, Penttilä M (1996) Cloning of genes encoding α-l-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62:3840–3846PubMedPubMedCentralGoogle Scholar
  19. Matsuzawa T, Kaneko S, Yaoi K (2015) Screening, identification and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase useful for biomass saccharification from a compost microbial metagenome. Appl Microbiol Biotech 99:8943–8954CrossRefGoogle Scholar
  20. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  21. Nakazawa H, Kawai T, Ida N, Shida Y, Shioya K, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W (2016) A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion. Enzym Microb Technol 82:89–95CrossRefGoogle Scholar
  22. Ogasawara W, Shida Y, Furukawa T, Shimada R, Nakagawa S, Kawamura M, Yagyu T, Kosuge A, Xu J, Nogawa M, Okada H, Morikawa Y (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl Microbiol Biotechnol 72:995–1003CrossRefPubMedGoogle Scholar
  23. Pérez-González JA, van Peij NN, Bezoen A, MacCabe AP, Ramón D, de Graaff LH (1998) Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a β-xylosidase. Appl Environ Microbiol 64:1412–1419PubMedPubMedCentralGoogle Scholar
  24. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158:58–68CrossRefPubMedGoogle Scholar
  25. Pribowo A, Arantes V, Saddler JN (2012) The absorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme Microb Technol 50:195–203CrossRefPubMedGoogle Scholar
  26. Saarelainen R, Paloheimo M, Fagerström R, Suominen PL, Nevalainen KM (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI9) gene xyn2. Mol Gen Genet 241:497–503CrossRefPubMedGoogle Scholar
  27. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefPubMedGoogle Scholar
  28. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemical characterization and identification of the catalytic residues of a family 43 β-d-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44:387–397CrossRefPubMedGoogle Scholar
  29. Sørensen A, Lübeck M, Lübeck PS, Ahring BK (2013) Fungal β-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3:612–631CrossRefPubMedPubMedCentralGoogle Scholar
  30. Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178CrossRefPubMedGoogle Scholar
  31. Tenkanen M, Puls J, Poutanen K (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb Technol 14:566–574CrossRefGoogle Scholar
  32. Tenkanen M, Vrsanská M, Siika-aho M, Wong DW, Puchart V, Penttilä M, Saloheimo M, Biely P (2013) Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. FEBS J 280:285–301CrossRefPubMedGoogle Scholar
  33. Törrönen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (NY) 10:1461–1465CrossRefGoogle Scholar
  34. Turunen O, Vuorio M, Fenel F, Leisola M (2002) Engineering of multiple arginines into Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng 15:141–145CrossRefPubMedGoogle Scholar
  35. Várnai A, Viikari L, Marjamaa K, Siika-aho M (2011) Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Bioresour Technol 102:1220–1227CrossRefPubMedGoogle Scholar
  36. Xiong H, Fenel F, Leisola M, Turunen O (2004) Engineering the thermostability of Trichoderma reesei endo-1,4-β-xylanase II by combination of disulphide binding. Extremophiles 8:393–400CrossRefPubMedGoogle Scholar
  37. Xu J, Takakuwa N, Nogawa M, Okada H, Morikawa Y (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49:718–724CrossRefGoogle Scholar
  38. Xu J, Nogawa M, Okada H, Morikawa K (2000) Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 54:370–375CrossRefPubMedGoogle Scholar
  39. Yazawa R, Takakura J, Sakata T, Ihsanawati, Yatsunami R, Fukui T, Kumasaka T, Tanaka N, Nakamura S (2011) A calcium-dependent xylan-binding domain of alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Biosci Biotechnol Biochem 75:379–381CrossRefPubMedGoogle Scholar
  40. Zouari Ayadi D, Hmida Sayari A, Ben Mabrouk S, Mezghani M, Bejar S (2015) Improvement of Trichoderma reesei xylanase II thermal stability by serine to threonine surface mutations. Int J Biol Macromol 72:163–170CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tomohiko Matsuzawa
    • 1
  • Satoshi Kaneko
    • 2
  • Katsuro Yaoi
    • 1
    Email author
  1. 1.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan
  2. 2.Department of Subtropical Biochemistry and Biotechnology, Faculty of AgricultureUniversity of the RyukyusOkinawaJapan

Personalised recommendations