Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors

Abstract

The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L−1, similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139. doi:10.1007/s10529-006-9063-1

    CAS  Article  PubMed  Google Scholar 

  2. Bang JH, Helmich RJ, Suslick KS (2008) Nanostructured ZnS:Ni2+ photocatalysts prepared by ultrasonic spray pyrolysis. Adv Mater 20(13):2599–2693

    CAS  Article  Google Scholar 

  3. Fang X, Bando Y, Gautamab UK, Zhaib T, Zeng H, Xub X, Liao M, Golberg D (2009) ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit Rev Solid State Mater Sci 34(3–4):190–223

    CAS  Article  Google Scholar 

  4. Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Goldberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56(2):175–287

    CAS  Article  Google Scholar 

  5. Hennebel T, Van Nevel S, Verschuere S, DeCorte S, De Gusseme B, Cuvelier C, Fitts JP, van der Lelie D, Boon N, Verstraete W (2011) Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 91:1435–1445

    CAS  Article  PubMed  Google Scholar 

  6. Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97:859–869

    CAS  Article  PubMed  Google Scholar 

  7. Jang GG, Gresback RG, Ivanov IN, Meyer III HM, Kidder M, Phelps TJ, Graham DE, Moon J-W (2015a) Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J Mater Chem C 3:644–650

    CAS  Article  Google Scholar 

  8. Jang GG, Jacobs CB, Ivanov IN, Joshi PC, Meyer III HM, Kidder M, Armstrong BL, Datskos PG, Graham DE, Moon J-W (2015b) In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria. Nanotechnology 26:325602

  9. Li Y, Li X, Yang C, Li Y (2004) Ligand-controlling synthesis and ordered assembly of ZnS nanorods and nannodots. J Phys Chem B 108(41):16002–16110

    CAS  Article  Google Scholar 

  10. Ludi B, Olliges-Stadler I, Rossell MD, Niederberger M (2011) Extension of the benzyl alcohol route to metal sulfides: "nonhydrolytic" thio sol-gel synthesis of ZnS and SnS2. Chem Commun 47(18):5280–5282

    CAS  Article  Google Scholar 

  11. Madden AS, Swindle AL, Beazley MJ, Moon J-W, Ravel B, Phelps TJ (2012) Long-term solid-phase fate of co-precipitated U(VI)-Fe(III) following biological iron reduction by Thermoanaerobacter. Am Mineral 97(10):1641–1652

    CAS  Article  Google Scholar 

  12. Mala JGS, Rose C (2014) Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J Biotechnol 170:73–78

    Article  Google Scholar 

  13. Mohagheghpour M, Rabiee M, Moztarzadeh F, Tahriri M, Jafarbeglou M, Bizari D, Eslami H (2009) Controllable synthesis, characterization and optical properties of ZnS:Mn nanoparticles as a novel biosensor. Mater Sci Eng, C 29(6):1842–1848

    CAS  Article  Google Scholar 

  14. Moon J-W, Ivanov IN, Duty CE, Love LJ, Rondinone AJ, Wang W, Li Y-L, Madden AS, Mosher JJ, Hu MZ, Suresh AK, Rawn CJ, Jung H, Lauf RJ, Phelps TJ (2013) Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile. J Ind Microbiol Biotechnol 40(11):1263–1271

    CAS  Article  PubMed  Google Scholar 

  15. Moon J-W, Ivanov IN, Joshi PC, Armstrong BL, Wang W, Jung H, Rondinone AJ, Jellison Jr G, Meyer III HM, Jang GG, Meisner RA, Duty CE, Phelps TJ (2014) Scalable production of microbially-mediated ZnS nanoparticles and application to functional thin films. Acta Biomater 10(10):4474–4483

  16. Moon J-W, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Lauf RJ, Phelps TJ (2010a) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37(10):1023–1031

    CAS  Article  PubMed  Google Scholar 

  17. Moon J-W, Rawn CJ, Rondinone AJ, Wang W, Vali H, Yeary LW, Love LJ, Kirkham MJ, Gu B, Phelps TJ (2010b) Crystallite sizes and lattice parameters of nano-biomagnetite particles. J Nanosci Nanotechnol 10(12):8298–8306

    CAS  Article  PubMed  Google Scholar 

  18. Moon J-W, Roh Y, Lauf RJ, Vali H, Yeary LW, Phelps TJ (2007a) Microbial preparation of metal-substituted magnetite nanoparticles. J Microbiol Methods 70(1):150–158

    CAS  Article  PubMed  Google Scholar 

  19. Moon J-W, Roh Y, Yeary LW, Lauf RJ, Rawn CJ, Love LJ, Phelps TJ (2007b) Microbial formation of lanthanide-substituted magnetites by Thermoanaerobacter sp TOR-39. Extremophiles 11(6):859–867

  20. Moreau J-W, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF (2007) Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316(5831):1600–1603

    CAS  Article  PubMed  Google Scholar 

  21. NIOSH (2013) Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes. DHHS (NIOSH), Cincinnati, OH

  22. Okabe S, Nielsen PH, Jones WL, Characklis WG (1995) Sulfide product inhibition of Desulfovibrio desulfuricans in batch and continuous cultures. Water Res 29(2):571–578

    CAS  Article  Google Scholar 

  23. Park TJ, Lee KG, Lee SY (2016) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol 100(2):521–534

  24. Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68(12):6013–6020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Salunke BK, Sawant SS, Lee S-I, Kim BS (2015) Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(13):5419–5427

    CAS  Article  PubMed  Google Scholar 

  26. Schröfel A, Kratošová G, Šafarˇík I, Šafarˇíková M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater 10(10):4023–4042

    Article  PubMed  Google Scholar 

  27. Song H, Leam Y-M, Kim Y-B, Yu Y-T (2008) Synthesis and fluorecence properties of pure and metal-doped spherical ZnS particles from EDTA-metal complexes. J Phys Chem Solids 69(1):153–160

    CAS  Article  Google Scholar 

  28. Villadsen J, Nielsen J, Lidén G (2011) Scale-up of bioprocesses Bioreaction engineering principles. Springer, New York, pp. 497–546

    Book  Google Scholar 

  29. Vishnivetskaya TA, Hamilton-Brehm SD, Podar M, Mosher JJ, Palumbo AV, Phelps TJ, Keller M, Elkins GE (2015) Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park. Environ Microbiol 69(2):333–345

  30. Wang X, Shi J, Feng Z, Li M, Li C (2011) Visible emission characteristics from different defects of ZnS nanocrystals. Phys Chem Chem Phys 13(10):4715–4723

    CAS  Article  PubMed  Google Scholar 

  31. Wu Q, Cao H, Zhang S, Zhang X, Rabinovich D (2006) Generation and optical properties of monodispersed wurtizte-type ZnS microspheres. Inorg Chem 45(18):7316–7322

    CAS  Article  PubMed  Google Scholar 

  32. X-Rite (2009) Munsell soil color charts. X-Rite Inc., Grand Rapids, MI

  33. Yu S, Yoshimura M (2006) Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS.(NH2CH2CH2NH2)0.5. Adv Mater 14(4):296–300

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the US Department of Energy (DOE), Advanced Manufacturing Office, Low Temperature Material Synthesis Program (CPS 24762). FTIR analysis performed by M.K. Kidder was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ORNL is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The authors thank Dr. C.B. Jacobs at ORNL for constructive discussion, Dr. J, Zhu for TEM images and S.R. Cline and J.P. Dugger for assistance designing the pilot plant and safety procedures. We also thank Stout Tanks & Kettles, LLC, for the customized reactor design and construction.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ji-Won Moon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http:// energy.gov/downloads/doe-public-access-plan).

Electronic Supplementary Material

ESM 1

(PDF 942 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moon, JW., Phelps, T.J., Fitzgerald Jr, C.L. et al. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors. Appl Microbiol Biotechnol 100, 7921–7931 (2016). https://doi.org/10.1007/s00253-016-7556-y

Download citation

Keywords

  • Pilot plant reactor
  • Microbially mediated manufacturing
  • Zinc sulfide nanoparticles
  • Scalability