Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation

Abstract

We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p < 0.05) in the number of biofilm cells (25.5–61.8 %) depending on the probiotic strain and the biofilm phase. L. rhamnosus supernatants had no significant effect on the mature biofilm (p > 0.05), but significantly reduced the early stages of Candida biofilm formation (p < 0.01). Microscopic analyses revealed that L. rhamnosus suspensions reduced Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alcazar-Fuoli L, Mellado E (2014) Current status of antifungal resistance and its impact on clinical practice. Br J Haematol 166(4):471–484. doi:10.1111/bjh.12896

    Article  PubMed  Google Scholar 

  2. Anderson JM, Soll DR (1986) Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132(7):2035–2047. doi:10.1099/00221287-132-7-2035

    CAS  PubMed  Google Scholar 

  3. Arendrup MC (2010) Epidemiology of invasive candidiasis. Curr Opin Crit Care 16(5):445–452. doi:10.1097/MCC.0b013e32833e84d2

    Article  PubMed  Google Scholar 

  4. Atanassova M, Choiset Y, Dalgalarrondo M, Chobert JM, Dousset X, Ivanova I, Haertle T (2003) Isolation and partial biochemical characterization of a proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. paracasei strain M3. Int J Food Microbiol 87(1–2):63–73. doi:10.1016/S0168-1605(03)00054-0

    CAS  Article  PubMed  Google Scholar 

  5. Bandara HM, Cheung BP, Watt RM, Jin LJ, Samaranayake LP (2013) Secretory products of Escherichia coli biofilm modulate Candida biofilm formation and hyphal development. J Investig Clin Dent 4(3):186–199. doi:10.1111/jicd.12048

    CAS  Article  PubMed  Google Scholar 

  6. Ceresa C, Tessarolo F, Caola I, Nollo G, Cavallo M, Rinaldi M, Fracchia L (2015) Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol 118(5):1116–1125. doi:10.1111/jam.12760

    CAS  Article  PubMed  Google Scholar 

  7. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT (2015a) In vitro modulation of probiotic bacteria on the biofilm of Candida glabrata. Anaerobe 34:132–138. doi:10.1016/j.anaerobe.2015.05.009

    CAS  Article  PubMed  Google Scholar 

  8. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT (2015b) Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates. J Appl Microbiol 118:1180–1190. doi:10.1111/jam.12772

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E (2010) Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 5(3):321–332. doi:10.1021/cb900243b

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Ericson JE, Benjamin DK Jr (2014) Fluconazole prophylaxis for prevention of invasive candidiasis in infants. Curr Opin Pediatr 26(2):151–156. doi:10.1097/MOP.0000000000000060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Falagas ME, Betsi GI, Athanasiou S (2006) Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J Antimicrob Chemother 58(2):266–272. doi:10.1093/jac/dkl246

    CAS  Article  PubMed  Google Scholar 

  12. Fidan I, Kalkanci A, Yesilyurt E, Yalcin B, Erdal B, Kustimur S, Imir T (2009) Effects of Saccharomyces boulardii on cytokine secretion from intraepithelial lymphocytes infected by Escherichia coli and Candida albicans. Mycoses 52(1):29–34. doi:10.1111/j.1439-0507.2008.01545.x

    CAS  Article  PubMed  Google Scholar 

  13. Hasslof P, Hedberg M, Twetman S, Stecksen-Blicks C (2010) Growth inhibition of oral mutans streptococci and Candida by commercial probiotic lactobacilli—an in vitro study. BMC Oral Health 10:18. doi:10.1186/1472-6831-10-18

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hatakka K, Ahola AJ, Yli-Knuuttila H, Richardson M, Poussa T, Meurman JH, Korpela R (2007) Probiotics reduce the prevalence of oral Candida in the elderly—a randomized controlled trial. J Dent Res 86(2):125–130

    CAS  Article  PubMed  Google Scholar 

  15. Hu H, Merenstein DJ, Wang C, Hamilton PR, Blackmon ML, Chen H, Calderone RA, Li D (2013) Impact of eating probiotic yogurt on colonization by Candida species of the oral and vaginal mucosa in HIV-infected and HIV-uninfected women. Mycopathologia 176(3–4):175–181. doi:10.1007/s11046-013-9678-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ishikawa KH, Mayer MP, Miyazima TY, Matsubara VH, Silva EG, Paula CR, Campos TT, Nakamae AE (2014) A multispecies probiotic reduces oral Candida colonization in denture wearers. J Prosthodont 24(3):194–199. doi:10.1111/jopr.12198

    Article  PubMed  Google Scholar 

  17. Jin Y, Zhang T, Samaranayake YH, Fang HH, Yip HK, Samaranayake LP (2005) The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 159(3):353–360. doi:10.1007/s11046-004-6987-7

    CAS  Article  PubMed  Google Scholar 

  18. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101(19):7329–7334. doi:10.1073/pnas.0401648101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kheradmand E, Rafii F, Yazdi MH, Sepahi AA, Shahverdi AR, Oveisi MR (2014) The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans. Daru 22:48. doi:10.1186/2008-2231-22-48

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kohler GA, Assefa S, Reid G (2012) Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol 2012:636474. doi:10.1155/2012/636474

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kovachev SM, Vatcheva-Dobrevska RS (2015) Local probiotic therapy for vaginal Candida albicans infections. Probiotics Antimicrob Proteins 7(1):38–44. doi:10.1007/s12602-014-9176-0

    Article  PubMed  Google Scholar 

  22. Kraft-Bodi E, Jorgensen MR, Keller MK, Kragelund C, Twetman S (2015) Effect of probiotic bacteria on oral Candida in frail elderly. J Dent Res 94(9):181–186. doi:10.1177/0022034515595950

    Article  Google Scholar 

  23. Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova H (2011) Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J Med Microbiol 60:1261–1269. doi:10.1099/jmm.0.032037-0

    CAS  Article  PubMed  Google Scholar 

  24. Li D, Li Q, Liu C, Lin M, Li X, Xiao X, Zhu Z, Gong Q, Zhou H (2014) Efficacy and safety of probiotics in the treatment of Candida-associated stomatitis. Mycoses 57(3):141–146. doi:10.1111/myc.12116

    Article  PubMed  Google Scholar 

  25. Li H, Liu L, Zhang S, Cui W, Lv J (2012) Identification of antifungal compounds produced by Lactobacillus casei AST18. Curr Microbiol 65(2):156–161. doi:10.1007/s00284-012-0135-2

    CAS  Article  PubMed  Google Scholar 

  26. Maldonado-Barragan A, Caballero-Guerrero B, Lucena-Padros H, Ruiz-Barba JL (2013) Induction of bacteriocin production by coculture is widespread among plantaricin-producing Lactobacillus plantarum strains with different regulatory operons. Food Microbiol 33(1):40–47. doi:10.1016/j.fm.2012.08.009

    CAS  Article  PubMed  Google Scholar 

  27. Matsubara VH, Bandara HM, Mayer MP, Samaranayake LP (2016) Probiotics as antifungals in mucosal candidiasis. Clin Infect Dis. doi:10.1093/cid/ciw038

    PubMed  Google Scholar 

  28. Matsubara VH, Silva EG, Paula CR, Ishikawa KH, Nakamae AE (2012) Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis 18(3):260–264. doi:10.1111/j.1601-0825.2011.01868.x

    CAS  Article  PubMed  Google Scholar 

  29. Mendonça FH, Santos SS, Faria Ida S, Silva CRG e, AO J, MV L (2012) Effects of probiotic bacteria on Candida presence and IgA anti-Candida in the oral cavity of elderly. Braz Dent J 23(5):534–538. doi:10.1590/S0103-64402012000500011

    Article  PubMed  Google Scholar 

  30. Meurman JH (2005) Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113(3):188–196

    Article  PubMed  Google Scholar 

  31. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.165

    CAS  Article  PubMed  Google Scholar 

  32. Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Lukaszewicz M (2010) Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One 5(8):e12050. doi:10.1371/journal.pone.0012050

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nett JE (2014) Future directions for anti-biofilm therapeutics targeting Candida. Expert Rev Anti-Infect Ther 12(3):375–382. doi:10.1586/14787210.2014.885838

    CAS  Article  PubMed  Google Scholar 

  34. Orsi CF, Sabia C, Ardizzoni A, Colombari B, Neglia RG, Peppoloni S, Morace G, Blasi E (2014) Inhibitory effects of different lactobacilli on Candida albicans hyphal formation and biofilm development. J Biol Regul Homeost Agents 28(4):743–752

    CAS  PubMed  Google Scholar 

  35. Pappas PG (2014) Antifungal clinical trials and guidelines: what we know and do not know. Cold Spring Harb Perspect Med 4(11):a019745. doi:10.1101/cshperspect.a019745

    Article  PubMed  Google Scholar 

  36. Parolin C, Marangoni A, Laghi L, Foschi C, Nahui Palomino RA, Calonghi N, Cevenini R, Vitali B (2015) Isolation of vaginal lactobacilli and characterization of anti-Candida activity. PLoS One 10(6):e0131220. doi:10.1371/journal.pone.0131220

    Article  PubMed  PubMed Central  Google Scholar 

  37. Polke M, Hube B, Jacobsen ID (2015) Candida survival strategies. Adv Appl Microbiol 91:139–235. doi:10.1016/bs.aambs.2014.12.002

    Article  PubMed  Google Scholar 

  38. Rizzello CG, Filannino P, Di Cagno R, Calasso M, Gobbetti M (2014) Quorum-sensing regulation of constitutive plantaricin by Lactobacillus plantarum strains under a model system for vegetables and fruits. Appl Environ Microbiol 80(2):777–787. doi:10.1128/AEM.03224-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006a) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618. doi:10.1093/jac/dkl024

    CAS  Article  PubMed  Google Scholar 

  40. Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R (2006b) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B Biointerfaces 49(1):79–86. doi:10.1016/j.colsurfb.2006.03.003

    CAS  Article  PubMed  Google Scholar 

  41. Roy A, Chaudhuri J, Sarkar D, Ghosh P, Chakraborty S (2014) Role of enteric supplementation of probiotics on late-onset sepsis by Candida species in preterm low birth weight neonates: a randomized, double blind, placebo-controlled trial. N Am J Med Sci 6(1):50–57. doi:10.4103/1947-2714.125870

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ryu EH, Yang EJ, Woo ER, Chang HC (2014) Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi. Food Microbiol 41:19–26. doi:10.1016/j.fm.2014.01.011

    CAS  Article  PubMed  Google Scholar 

  43. Samaranayake LP (2012) Essential microbiology for dentistry, 4th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  44. Samaranayake LP, Cheung LK, Samaranayake YH (2002) Candidiasis and other fungal diseases of the mouth. Dermatol Ther 15:252–270. doi:10.1046/j.1529-8019.2002.01533.x

    Article  Google Scholar 

  45. Sanguinetti M, Posteraro B, Lass-Florl C (2015) Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58(Suppl 2):2–13. doi:10.1111/myc.12330

    Article  PubMed  Google Scholar 

  46. Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62(Pt 1):10–24. doi:10.1099/jmm.0.045054-0

    CAS  Article  PubMed  Google Scholar 

  47. Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17(5):741–754. doi:10.1016/S1521-6918(03)00052-0

    CAS  Article  PubMed  Google Scholar 

  48. Sherry L, Jose A, Murray C, Williams C, Jones B, Millington O, Bagg J, Ramage G (2012) Carbohydrate derived fulvic acid: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms. Front Microbiol 3:116. doi:10.3389/fmicb.2012.00116

    Article  PubMed  PubMed Central  Google Scholar 

  49. Simark-Mattsson C, Jonsson R, Emilson CG, Roos K (2009) Final pH affects the interference capacity of naturally occurring oral Lactobacillus strains against mutans streptococci. Arch Oral Biol 54(6):602–607. doi:10.1016/j.archoralbio.2009.03.005

    CAS  Article  PubMed  Google Scholar 

  50. Strus M, Kucharska A, Kukla G, Brzychczy-Wloch M, Maresz K, Heczko PB (2005) The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect Dis Obstet Gynecol 13(2):69–75

    Article  PubMed  PubMed Central  Google Scholar 

  51. Taff HT, Mitchell KF, Edward JA, Andes DR (2013) Mechanisms of Candida biofilm drug resistance. Future Microbiol 8(10):1325–1337. doi:10.2217/fmb.13.101

    CAS  Article  PubMed  Google Scholar 

  52. Verdenelli MC, Coman MM, Cecchini C, Silvi S, Orpianesi C, Cresci A (2014) Evaluation of antipathogenic activity and adherence properties of human Lactobacillus strains for vaginal formulations. J Appl Microbiol 116(5):1297–1307. doi:10.1111/jam.12459

    CAS  Article  PubMed  Google Scholar 

  53. Vilela SF, Barbosa JO, Rossoni RD, Santos JD, Prata MC, Anbinder AL, Jorge AO, Junqueira JC (2015) Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 6(1):29–39. doi:10.4161/21505594.2014.981486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Wang H, Yan Y, Wang J, Zhang H, Qi W (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS One 7(1):e29452. doi:10.1371/journal.pone.0029452

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Zakaria Gomaa E (2013) Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. J Gen Appl Microbiol 59(6):425–436. doi:10.2323/jgam.59.425

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Carol Tran for the technical support with the scanning electron microscope and the Coordination for the Improvement of Higher Education Personnel (CAPES) Foundation for supporting Victor H. Matsubara.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lakshman P. Samaranayake.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsubara, V.H., Wang, Y., Bandara, H.M.H.N. et al. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol 100, 6415–6426 (2016). https://doi.org/10.1007/s00253-016-7527-3

Download citation

Keywords

  • Biofilm
  • Candida albicans
  • Candidiasis
  • Lactobacillus
  • Probiotics