Skip to main content

Fungal biotransformation of tanshinone results in [4+2] cycloaddition with sorbicillinol: evidence for enzyme catalysis and increased antibacterial activity

Abstract

The biotransformation of tanshinone IIA to a new antibacterial agent tanshisorbicin (1) by the fungus Hypocrea sp. (AS 3.17108) is described. The structure of tanshisorbicin is a hybrid of tanshinone IIA (2) and sorbicillinol (3). The latter is a metabolite produced by Hypocrea sp. The structure of tanshisorbicin was determined using mass spectrometry, NMR spectroscopy, and ECD calculations. The anti-MRSA activity of 1 was found to be significantly higher than that of the parent substrate Tan IIA. Preliminary experiments indicate that tanshisorbicin is formed via a [4+2] cycloaddition reaction that is likely catalyzed by microbial enzyme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abe N, Sugimoto O, Tanji K, Hirota A (2000) Identification of the quinol metabolite “sorbicillinol”, a key intermediate postulated in bisorbicillinoid biosynthesis. J Am Chem Soc 122:12606–12607

    Article  CAS  Google Scholar 

  • Abe N, Yamamoto K, Arakawa T, Hirota A (2001) The biosynthesis of bisorbicillinoids: evidence for a biosynthetic route from bisorbicillinol to bisorbibutenolide and bisorbicillinolide. Chem Commun 1:23–24

    Article  Google Scholar 

  • Abe N, Arakawa T, Yamamoto K, Hirota A (2002) Biosynthesis of bisorbicillinoid in Trichoderma sp. USF-2690; evidence for the biosynthetic pathway, via sorbicillinol, of sorbicillin, bisorbicillinol, bisorbibutenolide, and bisorbicillinolide. Biosci Biotechnol Biochem 66:2090–2099

    Article  CAS  PubMed  Google Scholar 

  • Adams JD Jr, Wall M, Garcia C (2005) Salvia columbariae contains tanshinones. Evid-Based Compl Alt 2:107–110

    Article  Google Scholar 

  • Alken S, Kelly CM (2013) Benefit risk assessment and update on the use of docetaxel in the management of breast cancer. Cancer Manag Res 5:357–365

    PubMed  PubMed Central  Google Scholar 

  • Auclair K, Sutherland A, Kennedy J, Witter DJ, Van den Heever J, Hutchinson CR, Vederas JC (2000) Lovastatin nonaketide synthase catalyzes an intramolecular Diels–Alder reaction of a substrate analogue. J Am Chem Soc 122:11519–11520

    Article  CAS  Google Scholar 

  • Cragg GM, Newman D (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efferth T, Fu YJ, Zu YG, Schwarz G, Konkimalla VSB, Wink M (2007) Molecular target-guided tumor therapy with natural products derived from traditional Chinese medicine. Curr Med Chem 14:2024–2032

    Article  CAS  PubMed  Google Scholar 

  • Fage CD, Isiorho EA, Liu YN, Wagner DT, Liu HW, Keatinge-Clay AT (2015) The structure of SpnF, a standalone enzyme that catalyzes [4+2] cycloaddition. Nat Chem Biol 11:256–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga BM, Bressa C, González-Vallejo V, González P, Guillermo R (2012) Biotransformation of ent-kaur-16-ene and ent-trachylobane 7β-acetoxy derivatives by the fungus Gibberella fujikuroi (Fusarium fujikuroi). Phytochemistry 81:60–70

    Article  CAS  PubMed  Google Scholar 

  • Grieco PA (1998) Organic synthesis in water. Chapman & Hall, London

    Book  Google Scholar 

  • Hanson JR (1992) The microbiological transformation of diterpenoids. Nat Prod Rep 9:139–151

    Article  CAS  PubMed  Google Scholar 

  • Harada N, Nakanishi K (1983) Circular dichroic spectroscopy-exciton coupling in organic stereochemistry. University Science books, California

    Google Scholar 

  • Hashimoto T, Teruya K, Hirano T, Shinya K, Ikeda H, Liu HW, Nishiyama M, Kuzuyama T (2015) Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4+2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides. J Am Chem Soc 137:572–575

    Article  CAS  PubMed  Google Scholar 

  • Houghton PJ (2010) Everolimus. Clin Cancer Res 16:1368–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisgen R (1968) Cycloadditions—definition, classification, and characterization. Angew Chem Int Ed Engl 7:321–328

    Article  CAS  Google Scholar 

  • Illarionov B, Eisenreich W, Bacher A (2001) A pentacyclic reaction intermediate of riboflavin synthase. Proc Natl Acad Sci U S A 98:7224–7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson T, Christensen CB, Jordening H, Frølund C (1988) The bioavailability of rectally administered morphine. Pharmacol Toxicol 62:203–205

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Lim D, Blake JF (1993) Ab initio study of Diels–Alder reactions of cyclopentadiene with ethylene, isoprene, cyclopentadiene, acrylonitrile, and methyl vinyl ketone. J Am Chem Soc 115:2936–2942

    Article  CAS  Google Scholar 

  • Kim HJ, Ruszczycky MW, Choi SH, Liu YN, Liu HW (2011) Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature 473:109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Ruszczycky MW, Liu HW (2012) Current developments and challenges in the search for a naturally selected Diels-Alderase. Curr Opin Chem Biol 16:124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier. Science 325:161–165

    Article  PubMed  Google Scholar 

  • Liu X, Chen R, Xie D, Mei M, Zou J, Chen X, Dai J (2012) Microbial transformations of taxadienes and the multi-drug resistant tumor reversal activities of the metabolites. Tetrahedron 68:9539–9549

    Article  CAS  Google Scholar 

  • Loughlin WA (2000) Biotransformations in organic synthesis. Bioresource Technol 74:49–62

    Article  CAS  Google Scholar 

  • Lu JH, Deng S, Chen HR, Hou J, Zhang BJ, Tian Y, Wang CY, Ma XC (2013) Microbial transformation of cinobufotalin by Alternaria alternate AS 3.4578 and Aspergillus niger AS 3.739. J Mol Catal B-Enzym 89:102–107

    Article  CAS  Google Scholar 

  • Mahato SB, Majumdar I (1993) Current trends in microbial steroid biotransformation. Phytochemistry 34:883–898

    Article  CAS  PubMed  Google Scholar 

  • Mufflera K, Leipolda D, Schellera M, Haasb C, Steingroewerb J, Bleyb T, Neuhausc HE, Miratad MA, Schraderd J, Ulbera R (2011) Biotransformation of triterpenes. Process Biochem 46:1–15

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaou KC, Chen JS, Edmonds DJ, Estrada AA (2009) Recent advances in the chemistry and biology of naturally occurring antibiotics. Angew Chem Int Ed Engl 48:660–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa H, Yagi K, Watanabe K, Honma M, Ichihara A (1997) Biosynthesis of macrophomic acid: plausible involvement of intermolecular Diels-Alder reaction. Chem Commun 1:97–98

    Article  Google Scholar 

  • Pantaleone DP (2006) Handbook of chiral chemicals. MarcellDekkerInc, New York

    Google Scholar 

  • Peltier S, Oger JM, Lagarce F, Couet W, Benoît JP (2006) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 23:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Rick LD, David SC, Fariborz F (1995) Aromatic annulation strategy for the synthesis of angularly-fused diterpenoid quinones. Total synthesis of (+)-neocryptotanshinone, (-)-cryptotanshinone, tanshinone IIA, and (±)-royleanone. J Org Chem 60:8341–8350

    Article  Google Scholar 

  • Shah SA, Sultan S, Hassan NB, Muhammad FK, Muhammad AB, Hussain FB, Hussain M, Adnan HS (2013) Biotransformation of 17α-ethynyl substituted steroidal drugs with microbial and plant cell cultures: a review. Steroids 78:1312–1324

    Article  CAS  PubMed  Google Scholar 

  • Tian ZH, Sun P, Yan Y, Wu ZH, Zheng QF, Zhou SX, Zhang H, Yu FT, Jia XY, Chen DD (2015) An enzymatic [4+2] cyclization cascade creates the pentacyclic core of pyrroindomycins. Nat Chem Biol 11:259–265

    CAS  PubMed  Google Scholar 

  • Trifonov LS, Dreiding AS, Hoesch L, Rast DM (1981) Isolation of four hexaketides from Verticillium intertextum. Preliminary communication. Hel Chim Acta 64:1843–1846

    Article  CAS  Google Scholar 

  • Trifonov LS, Bieri JH, Prewo R, Dreiding AS, Hoesch L, Rast DM (1983) Isolation and structure elucidation of three metabolites from Verticillium intertextum: sorbicillin, dihydrosorbicillin and bisvertinoquinol. Tetrahedron 39:4243–4256

    Article  CAS  Google Scholar 

  • Trifonov LS, Hilpert H, Floersheim P, Dreiding AS, Rast DM, Skrivanova R, Hoesch L (1986) Bisvertinols: a new group of dimeric vertinoids from Verticillium intertextum. Tetrahedron 42:3157–3179

    Article  CAS  Google Scholar 

  • Venisetty R, Ciddi V (2003) Application of microbial biotransformation for the new drug discovery using natural drugs as substrates. Curr Pharm Biotechnol 4:153–167

    Article  CAS  PubMed  Google Scholar 

  • Wever WJ, Bogart JW, Baccile JA, Chan AN, Schroeder FC, Bowers AA (2015) Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4+2] cycloaddition. J Am Chem Soc 137:3494–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White NJ (1997) Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother 41:1413–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ye M, Dong YH, Hu HB, Tao SJ, Yin J, Guo DA (2011) Biotransformation of bufadienolides by cell suspension cultures of Saussurea involucrata. Phytochemistry 72:1779–1785

    Article  CAS  PubMed  Google Scholar 

  • Zhou LG, Wu JY (2006) Development and application of medicinal plant tissue cultures for production of drugs and herbal medicinals in China. Nat Prod Rep 23:789–810

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Program on Key Basic Research Project (973 program, 2013CB734000) and by grants from the China Ocean Mineral Resources R&D Association (DY125-15-T-07), the National Natural Science Foundation of China (81573341, 81102369, 81302678, 31430002, 31400090, 31320103911, 31125002), the Ministry of Science and Technology of China (2013ZX10005004-005 and 2011ZX09102-011-11), the National Institutes of Health (GM40541), the Welch Foundation (F-1511), and the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 312184. L.Z. is an awardee of the National Distinguished Young Scholar Program in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Zhang or Xueting Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 1366 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, W., Liu, M., Li, X. et al. Fungal biotransformation of tanshinone results in [4+2] cycloaddition with sorbicillinol: evidence for enzyme catalysis and increased antibacterial activity. Appl Microbiol Biotechnol 100, 8349–8357 (2016). https://doi.org/10.1007/s00253-016-7488-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7488-6

Keywords

  • Biotransformation
  • [4+2] cycloaddition reaction
  • Tanshinone IIA
  • Hypocrea sp