Skip to main content

Genotypic and phenotypic evolution of yeast interspecies hybrids during high-sugar fermentation

Abstract

The yeasts of the Saccharomyces genus exhibit a low pre-zygotic barrier and readily form interspecies hybrids. Following the hybridization event, the parental genomes undergo gross chromosomal rearrangements and genome modifications that may markedly influence the metabolic activity of descendants. In the present study, two artificially constructed hybrid yeasts (Saccharomyces cerevisiae x Saccharomyces uvarum and S. cerevisiae x Saccharomyces kudriavzevii) were used in order to evaluate the influence of high-sugar wine fermentation on the evolution of their genotypic and phenotypic properties. It was demonstrated that the extent of genomic modifications differs among the hybrids and their progeny, but that stress should not always be a generator of large genomic disturbances. The major genome changes were observed after meiosis in the F1 segregants in the form of the loss of different non-S. cerevisiae chromosomes. Under fermentation condition, each spore clone from a tetrad developed a mixed population characterized by different genotypic and phenotypic properties. The S. cerevisiae x S. uvarum spore clones revealed large modifications at the sequence level of the S. cerevisiae sub-genome, and some of the clones lost a few additional S. cerevisiae and S. uvarum chromosomes. The S. cerevisiae x S. kudriavzevii segregants were subjected to consecutive loss of the S. kudriavzevii markers and chromosomes. Both the hybrid types showed increased ethanol and glycerol production as well as better sugar consumption than their parental strains. The hybrid segregants responded differently to stress and a correlation was found between the observed genotypes and fermentation performances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Adams J, Oeller PW (1986) Structure of evolving populations of Saccharomyces cerevisiae: adaptive changes are frequently associated with sequence alterations involving mobile elements belonging to the Ty family. Proc Natl Acad Sci U S A 83:7124–7127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Castellari L, Zambonelli C, Carnacini A (1999) Yeast influence on volatile composition of wines. J Agric Food Chem 47:1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Antunovics Z, Nguyen HV, Gaillardin C, Sipiczki M (2005) Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae. FEMS Yeast Res 5:141–1150

    Article  Google Scholar 

  • Arroyo-López FN, Pérez-Torrado R, Querol A, Barrio E (2010) Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiol 27:628–637

    Article  PubMed  Google Scholar 

  • Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122:188–195

    Article  CAS  PubMed  Google Scholar 

  • Belloch C, Pérez-Torrado R, González SS, Pérez-Ortín JE, García-Martínez J, Querol A, Barrio E (2009) Chimeric genomes of natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Appl Environ Microbiol 75:2534–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellon JR, Eglinton JM, Siebert TE, Pollnitz AP, Rose L, de Barros LM, Chambers PJ (2011) Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines. Appl Microbiol Biotechnol 91:603–612

    Article  CAS  PubMed  Google Scholar 

  • Bellon JR, Schmid F, Capone DL, Dunn BL, Chambers PJ (2013) Introducing a new breed of wine yeast: interspecific hybridization between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae. PLoS one 8:e62053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellon JR, Yang F, Day MP, Inglis DL, Chambers PJ (2015) Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes. Appl Microbiol Biotechnol 99:8597–8609

    Article  CAS  PubMed  Google Scholar 

  • Bizaj E, Cordente AG, Bellon JR, Raspor P, Curtin CD, Pretorius IS (2012) A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production. FEMS Yeast Res 12:456–465

    Article  CAS  PubMed  Google Scholar 

  • Bond U, Neal C, Donnelly D, James TC (2004) Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation. Curr Genet 45:360–370

    Article  CAS  PubMed  Google Scholar 

  • Chambers SR, Hunter N, Louis EJ, Borts RH (1996) The mismatch repair system reduces meiotic homologous recombination and stimulates recombination-dependent chromosome loss. Mol Cell Biol 16:6110–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combina M, Pérez-Torrado R, Tronchoni J, Belloch C, Querol A (2012) Genome-wide gene expression of natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions. Int J Food Microbiol 157:340–345

    Article  CAS  PubMed  Google Scholar 

  • Di Rienzi SC, Collingwood D, Raghuraman MK, Brewer BJ (2009) Fragile genomic sites are associated with origins of replication. Genome Biol Evol 1:350–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn B, Paulish T, Stanbery A, Piotrowski J, Koniges G, Kroll E, Louis EJ, Litti G, Sherlock G, Rosenzweig F (2013) Recurrent rearrangement during adaptive evolution in an interspecies yeast hybrid suggests a model for rapid introgression. PLoS Genet 9:e1003366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18:1610–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duval EH, Alves SL Jr, Dunn B, Sherlock G, Stambuk BU (2010) Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose. J Appl Microbiol 109:248–259

    CAS  PubMed  Google Scholar 

  • Eglinton JM, McWilliam SJ, Fogarty MW, Francis IL, Kwiatkowski MJ, Høj PB, Henschke PA (2000) The effect of Saccharomyces bayanus-mediated fermentation on the chemical composition and aroma profile of chardonnay wine. Aus J Grape Wine Res 6:190–196

    Article  CAS  Google Scholar 

  • Fernández-González M, Úbeda JF, Briones AI (2015) Study of Saccharomyces cervisiae wine traits for breeding through fermentation efficiency and tetrad analisis. Curr Microbiol 70:441–449

    Article  PubMed  Google Scholar 

  • Gafner J, Schütz M (1996) Impact of glucose-fructose-ratio on stuck fermentations: practical experiences to restart stuck fermentations. Vitic Enol Sci 51:214–218

    CAS  Google Scholar 

  • Gangl H, Matusic M, Tscheik G, Tiefenbrunner W, Hack C, Lopandic K (2009) Exceptional fermentation characteristics of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. New Biotechnol 25:244–251

    Article  CAS  Google Scholar 

  • González SS, Barrio E, Gafner J, Querol A (2006) Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6:1221–1234

    Article  PubMed  Google Scholar 

  • González SS, Gallo L, Climent MD, Barrio E, Querol A (2007) Enological characterization of natural hybrids from Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Int J Food Microbiol 116:11–18

    Article  PubMed  Google Scholar 

  • González SS, Barrio E, Querol A (2008) Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl Environ Microbiol 74:2314–2320

    Article  PubMed  PubMed Central  Google Scholar 

  • Groth G, Hansen J, Piškur J (1999) A natural chimeric yeast containing genetic material from three species. Int J Syst Bacteriol 49:1933–1938

    Article  CAS  PubMed  Google Scholar 

  • Hartung J, Elpelt B (1999) Multivariate statistik. Oldenbourg Wissenschaftsverlag, München

    Google Scholar 

  • Hofbauer J, Sigmund K (1984) Evolutionstheorie und dynamische systeme. Mathematische Aspekte der Selektion, Parey, Berlin-Hamburg

    Google Scholar 

  • Jacques N, Mallet S, Casaregola S (2009) Delimitation of the species of the Debaryomyces hansenii complex by intron sequence analysis. Int J Syst Evol Microbiol 59:1242–1251

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto M, Goto S (1995) Growth temperatures and electrophoretic karyotyping as tools for practical discrimination of Saccharomyces bayanus and Saccharomyces cerevisiae. J Gen Appl Microbiol 41:239–247

    Article  CAS  Google Scholar 

  • Kunicka-Styczyńska A, Rajkowska K (2011) Physiological and genetic stability of hybrids of industrial wine yeasts Saccharomyces sensu stricto complex. J Appl Microbiol 110:1538–1549

    Article  PubMed  Google Scholar 

  • Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci 108:14539–14544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borth N, Breitenbach M, Prillinger H, Tiefenbrunner W (2007) Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res 7:953–965

    Article  CAS  PubMed  Google Scholar 

  • Lopandic K, Rentsendorj U, Prillinger H, Sterflinger K (2013) Molecular characterisation of the closely related Debaryomyces species: proposition of D. vindobonensis sp. nov. from a municipal wastewater treatment plant. J Gen Appl Microbiol 59:49–58

    Article  CAS  PubMed  Google Scholar 

  • Masneuf I, Hansen J, Groth C, Piškur J, Dubourdieu D (1998) New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl Environ Microbiol 64:3887–3892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morales L, Dujon B (2012) Evolutionary role of interspecies hybridization and genetic exchanges in yeast. Microbiol Mol Biol Rev 76:721–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:115–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN (2000) Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 5:1932–1942

    Google Scholar 

  • Naumova ES, Naumov GI, Manneuf-Pomerade I, Aigle M (2005) Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae. Yeast 22:1099–1115

    Article  CAS  PubMed  Google Scholar 

  • Noble AC, Bursick GF (1984) The contribution of glycerol to perceived viscosity and sweetness in white wine. Am J Enol Vitic 35:110–112

    CAS  Google Scholar 

  • OIV (2015) Compendium of international methods of analysis of wines and musts (2 vol.). The international organisation of vine and wine. http://www.oiv.int/en/normen-und-technische-dokumente/analysemethoden/sammlung-internationaler-analysemethoden-fur-wein-und-most-2-bande. Accessed 10 March 2015

  • Oliveira BM, Barrio E, Querol A, Pèrez-Torrado R (2014) Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from cryophilic Saccharomyces kudriavzevii. PLoS one 9:e87290

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Través L, Lopes CA, Querol A, Barrio E (2014) On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation. PLoS one 9:e93729

    Article  PubMed  PubMed Central  Google Scholar 

  • Peris D, Belloch C, Lopandic K, Álvarez-Pérez JM, Querol A, Barrio E (2012a) The molecular characterization of new types of Saccharomyces cerevisiae x S. kudriavzevii hybrid yeasts unveils a high genetic diversity. Yeast 29:81–91

    Article  CAS  PubMed  Google Scholar 

  • Peris D, Lopes CA, Belloch C, Querol A, Barrio E (2012b) Comparative genomics among Saccharomyces cerevisiae x Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins. BMC Genomics 13:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfliegler WP, Antunovics Z, Sipiczki M (2012) Double sterility barrier between Saccharomyces species and its breakdown in allopolyploid hybrids by chromosome loss. FEMS Yeast Res 12:703–718

    Article  CAS  PubMed  Google Scholar 

  • Pfliegler WP, Atanasova A, Karanyicz E, Sipiczki M, Bond U, Druzhinina IS, Sterflinger K, Lopandic K (2014) Generation of new genotypic and phenotypic features in artificial and natural yeast hybrids. Food Technol Biotechnol 52:46–57

    CAS  Google Scholar 

  • Piotrowski JS, Nagarajan S, Kroll E, Stanbery A, Chiotti KE, Kruckeberg AL, Dunn B, Sherlock G, Rosenzweig F (2012) Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve. BMC Evol Biol 12:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinehart TA (2004) AFLP analysis using GeneMapper® software and an excel® macro that aligns and converts output to binary. Biotechniques 37:186–188

    CAS  PubMed  Google Scholar 

  • Rodrigues de Sousa H, Spencer-Martins I, Gonçalves P (2004) Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter in Saccharomyces sensu stricto yeasts. Yeast 21:519–530

    Article  PubMed  Google Scholar 

  • Salvadó Z, Arroyo-López FN, Guillamón JM, Salazar G, Querol A, Barrio E (2011) Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl Environ Microbiol 77:2292–2302

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez RG, Solodovnikova N, Wendland J (2012) Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance. Yeast 29:343–355

    Article  CAS  Google Scholar 

  • Schneyder J (1979) ALVA-methodenbuch für weinanalysen in Österreich. Bundesministerium für Land- und Forstwirtschaft, Vienna

    Google Scholar 

  • Serra A, Strehaiano P, Taillandier P (2005) Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth; impact of a wine yeast interspecific hybridization on these parameters. Int J Food Microbiol 104:257–265

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki M (2008) Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Res 8:996–1007

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki M (2011) Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome-a review. Ann Microbiol 61:85–93

    Article  Google Scholar 

  • Stanley D, Fraser S, Stanley GA, Chambers PJ (2010) Retrotransposon expression in ethanol-stressed Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Tronchoni J, Medina V, Guillamón JM, Querol A, Pérez-Torrado R (2014) Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations. BMC Genomics 15:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Tronchoni J, Rozès N, Querol A, Guillamón JM (2012) Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature. Int J Food Microbiol 155:191–198

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for windows: a software package for the construction and drawing of evolutionary trees for the Microsoft windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank E. Barrio and A. Querol for providing the strain HA2787. This study was partially supported by the grant 83ÖU12 from the Stiftung Aktion Österreich-Ungarn. WPP acknowledges the support of the Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences (MTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenija Lopandic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(PDF 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopandic, K., Pfliegler, W.P., Tiefenbrunner, W. et al. Genotypic and phenotypic evolution of yeast interspecies hybrids during high-sugar fermentation. Appl Microbiol Biotechnol 100, 6331–6343 (2016). https://doi.org/10.1007/s00253-016-7481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7481-0

Keywords

  • Genotypic and phenotypic evolution
  • High-sugar wine fermentation
  • Saccharomyces interspecies hybrids
  • AFLP
  • Karyotyping