Skip to main content
Log in

High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

CRM197 is the diphtheria toxin mutant used in many conjugate vaccines. A fusion CRM197 (fCRM197) containing all the tags conferred by the pET32a vector was produced as a soluble protein in Escherichia coli co-expressing several chaperone proteins in conjunction with low temperature cultivation. Trigger factor (Tf) enhanced formation of soluble fCRM197 (150.69 ± 8.95 μg/mL) to a greater degree than other chaperones when fCRM197 expression was induced at 25 °C for 12 h. However, prolonged cultivation resulted in a progressive reduction of fCRM197 accumulation. In contrast, at 15 °C cells, with or without Tf, fCRM197 accumulated to the highest level at 48 h (153.70 ± 13.14 μg/mL and 150.07 ± 8.13 μg/mL, respectively). Transmission electron microscopy (TEM) demonstrated that the formation of inclusion protein as well as cell lysis was reduced in cultures grown at 15 °C. Cell viability was substantially reduced in cells expressing Tf, compared to cultures without Tf, when fCRM197 was induced at 25 °C. The viability of Tf-expressing cells was enhanced when cultured at 15 °C. Both purified fCRM197 and CRM197 efficiently digested lambda DNA (λDNA) at 37 °C (92.78 and 97.45 %, respectively). Digestion efficiency of fCRM197 and CRM197 was reduced at 25 °C (80.80 and 62.73 %, respectively) and at 15 °C (7.34 and 24.79 %, respectively). These results demonstrating nuclease activity, enhanced cell lysis, and reduced cell viability are consistent with the finding of lower fCRM197 yield when cultivation and induction times were prolonged at 25 °C. The present work provides a procedure for the high-level production of soluble fCRM197 using E. coli as a heterologous host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berndt C, Lillig CH, Holmgren A (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta, Mol Cell Res 1783:641–650

    Article  CAS  PubMed  Google Scholar 

  • Berti F, Costantino P, Fragai M, Luchinat C (2004) Water accessibility, aggregation, and motional features of polysaccharide-protein conjugate vaccines. Biophys J 86:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessette PH, Åslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce C, Baldwin RL, Lessnick SL, Wisnieski BJ (1990) Diphtheria toxin and its ADP-ribosyltransferase-defective homologue CRM197 possess deoxyribonuclease activity. Proc Natl Acad Sci U S A 87:2995–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzzi S, Maistrello I (1973) Inhibition of growth of Ehrlich tumors in Swiss mice by diphtheria toxin. Cancer Res 33:2349–2353

    CAS  PubMed  Google Scholar 

  • Dateoka S, Ohnishi Y, Kakudo K (2012) Effects of CRM197, a specific inhibitor of HB-EGF, in oral cancer. Med Mol Morphol 45:91–97

    Article  CAS  PubMed  Google Scholar 

  • De Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol:7–32

  • Deng Q, Barbieri JT (2008) Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 62:271–288

    Article  CAS  PubMed  Google Scholar 

  • Guthrie B, Wickner W (1990) Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J Bacteriol 172:5555–5562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Bukau B, Kramer G (2010) Structure and function of the molecular chaperone trigger factor. Biochim Biophys Acta, Mol Cell Res 1803:650–661

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A 94:4978–4981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunami N, Yotsumoto F, Ishitsuka K, Fukami T, Odawara T, Manabe S, Ishikawa T, Tamura K, Kuroki M, Miyamoto S (2011) Antitumor effects of CRM197, a specific inhibitor of HB-EGF, in T-cell acute lymphoblastic leukemia. Anticancer Res 31:2483–2488

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • LaVallie E, DiBlasio E, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11:187–193

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Weiss R, Chen G, Iverson BL, Georgiou G (2001) Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB/gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 23:338–347

    Article  CAS  PubMed  Google Scholar 

  • Nakamura LT, Wisnieski BJ (1990) Characterization of the deoxyribonuclease activity of diphtheria toxin. J Biol Chem 265:5237–5241

    CAS  PubMed  Google Scholar 

  • Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz WA, Åslund F, Holmgren A, Backwith J (1997) The role of thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  CAS  PubMed  Google Scholar 

  • Rappuoli R (1983) Isolation and characterization of Corynebacterium diphtheriae nontandem double lysogens hyperproducing CRM197. Appl Environ Microbiol 46:560–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rappuoli R (1997) New and improved vaccines against diphtheria and tetanus. In: Laavine MM, Woodrow GC, Kaper JB, Cobon GS (eds) New generation vaccines, 2nd edn. Marcel Dekker, New York, NY

    Google Scholar 

  • Shinefield HR (2010) Overview of the development and current use of CRM 197 conjugate vaccines for pediatric use. Vaccine 28:4335–4339

    Article  CAS  PubMed  Google Scholar 

  • Stefan A, Conti M, Rubboli D, Ravagli L, Presta E, Hochkoeppler A (2011) Overexpression and purification of the recombinant diphtheria toxin variant CRM197 in Escherichia coli. J Biotechnol 156:245–252

    Article  CAS  PubMed  Google Scholar 

  • Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44

    Article  CAS  PubMed  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA ploymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  • Uchida T, Pappenheimer AM, Harper AA (1973) Diphtheria toxin and related proteins III. Reconstitution of hybrid “diptheria toxin” from nontoxic mutant proteins. J Biol Chem 248:3851–3854

    CAS  PubMed  Google Scholar 

  • Wang P, Xue Y, Shang X, Liu Y (2010) Diphtheria toxin mutant CRM197-mediated transcytosis across blood–brain barrier in vitro. Cell Mol Neurobiol 30:717–725

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhao J, Wang Y, Sun H, Jiang Y, Luo L, Yin Z (2013) Functional expression of hepassocin in Escherichia coli using SUMO fusion partner and molecular chaperones. Protein Expr Purif 92:135–140

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tan A, Lv J, Wang P, Yin X, Chen Y (2012) Soluble expression of recombinant human CD137 ligand in Escherichia coli by co-expression of chaperones. J Ind Microbiol Biotechnol 39:471–476

    Article  CAS  PubMed  Google Scholar 

  • Wegrzyn RD, Deuerling E (2005) Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell Mol Life Sci 62:2727–2738

    Article  CAS  PubMed  Google Scholar 

  • Xiong S, Wang YF, Ren XR, Li B, Zhang MY, Luo Y, Zhang L, Xie QL, Su KY (2005) Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its “oxidizing” mutant. World J Gastroenterol 11:1077–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi H, Yotsumoto F, Sonoda K, Kuroki M, Mekada E, Miyamoto S (2009) Synergistic anti-tumor effect of paclitaxel with CRM197, an inhibitor of HB-EGF, in ovarian cancer. Int J Cancer 124:1429–1439

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Petracca R (1999) Secretory expression of recombinant diphtheria toxin mutants in Bacillus subtilis. J Tongji Med Univ 19:253–256

  • Zhou Q-F, Luo X-G, Ye L, Xi T (2007) High-level production of a novel antimicrobial peptide perinerin in Escherichia coli by fusion expression. Curr Microbiol 54:366–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a research grant from BioNet-Asia Co., Ltd. The company also provided scholarship to PM. We are thankful to Dr. Laran T. Jensen, Department of Biochemistry, Mahidol University, for critical proof-reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Watanalai Panbangred.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahamad, P., Boonchird, C. & Panbangred, W. High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli . Appl Microbiol Biotechnol 100, 6319–6330 (2016). https://doi.org/10.1007/s00253-016-7453-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7453-4

Keywords

Navigation