Skip to main content
Log in

NAD+-specific glutamate dehydrogenase (EC. in Streptomyces coelicolor; in vivo characterization and the implication for nutrient-dependent secondary metabolism

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript


While glutamate and glutamate-rich compounds are widely used for culturing Streptomyces sp., little is known regarding glutamate catabolism at molecular level. Noting the presence of two distinct putative glutamate dehydrogenases (GDH), we constructed knockout mutants of each gene with Streptomyces coelicolor M145 and examined the functionality related to antibiotic production. Out of the two, the sco2999 knockout (ΔgdhB, NAD+-specific) showed outstanding effects; it decreased the growth sevenfold but initiated the undecylprodigiosin (RED) production in complex Difco nutrient media which otherwise does not support the production from M145. With glucose supplementation, the growth difference by ΔgdhB disappeared but we could obtain significantly increased actinorhodin (ACT) and RED biosynthesis with the mutant by limiting the glucose content (0.5∼1.0 %, w/v). Complementing the gene to the knockout mutant inhibited the production, confirming its gene specificity. Along with the extended impacts on overall nitrogen metabolism based on the intracellular metabolite analysis and enzyme assays, GdhB and glutamate utilization were shown to interfere with N-acetylglucosamine metabolism and the activity of its associated global transcriptional regulator (DasR). Taken together, GdhB—subjected to the nutritional context-dependent regulation—is proposed as a key member of central nitrogen metabolism to control the secondary metabolism initiation in exploiting the organic nitrogen sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  • Avignone Rossa C, White J, Kuiper A, Postma PW, Bibb M, Teixeira de Mattos MJ (2002) Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Met Eng. 4(2):138–150. doi:10.1006/mben.2001.0217

    Article  CAS  Google Scholar 

  • Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromato A 1125(1):76–88. doi:10.1016/j.chroma.2006.05.019

    Article  CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147. doi:10.1038/417141a

    Article  PubMed  Google Scholar 

  • Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Gen Res. 15(6):820–829. doi:10.1101/gr.3364705

    Article  CAS  Google Scholar 

  • Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J (2008) Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J Bio Chem 283(37):25186–25199. doi:10.1074/jbc.M803105200

    Article  CAS  Google Scholar 

  • Brana A, Paiva N, Demain A (1986) Pathways and regulation of ammonium assimilation in Streptomyces clavuligerus. J Gen Microbiol 132:1305–1317

    CAS  Google Scholar 

  • Bressler SaA S (1984) Detection of glutamine synthetase activity in marine phytoplankton: optimization of biosynthetic assay. Marin Eco-progress series 14:207–217

    Article  Google Scholar 

  • Chouayekh H, Virolle MJ (2002) The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Mol Microbiol 43(4):919–930

    Article  CAS  PubMed  Google Scholar 

  • D’Alia D, Nieselt K, Steigele S, Muller J, Verburg I, Takano E (2010) Noncoding RNA of glutamine synthetase I modulates antibiotic production in Streptomyces coelicolor A3(2). J Bacteriol 192(4):1160–1164. doi:10.1128/JB.01374-09

    Article  PubMed  PubMed Central  Google Scholar 

  • Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46(2):331–347

    Article  CAS  PubMed  Google Scholar 

  • Fisher SH (1989) Glutamate synthesis in Streptomyces coelicolor. J Bacteriol 171(5):2372–2377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher SH, Wray LV Jr (1989) Regulation of glutamine synthetase in Streptomyces coelicolor. J Bacteriol 171(5):2378–2383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the CPK gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiol. 156(Pt 8):2343–2353. doi:10.1099/mic.0.038281-0

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. PNAS 100(4):1541–1546. doi:10.1073/pnas.0337542100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Auger C, Appanna VP, Lemire J, Castonguay Z, Akbarov E, Appanna VD (2012) A blue native polyacrylamide gel electrophoretic technology to probe the functional proteomics mediating nitrogen homeostasis in Pseudomonas fluorescens. J Microbiol Methods 90(3):206–210. doi:10.1016/j.mimet.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  • Hesketh A, Fink D, Gust B, Rexer HU, Scheel B, Chater K, Wohlleben W, Engels A (2002) The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol Microbiol 46(2):319–330

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Jiao R (1998) Purification and properties of glutamate synthase from Streptomyces lincolnensis. Sci in China C 41(1):37–46. doi:10.1007/BF02882704

    Article  CAS  Google Scholar 

  • Kawada-Matsuo M, Mazda Y, Oogai Y, Kajiya M, Kawai T, Yamada S, Miyawaki S, Oho T, Komatsuzawa H (2012) GlmS and NagB regulate amino sugar metabolism in opposing directions and affect Streptococcus mutans virulence. PLoS One 7(3):e33382. doi:10.1371/journal.pone.0033382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser T BM, Buttner MJ, Chater KF, and Hopwood DA (2000) Practical Streptomyces genetics. Norwich, UK: The John Innes Foundation

  • Kim SH, Lee BR, Kim JN, Kim BG (2012) NdgR, a common transcriptional activator for methionine and leucine biosynthesis in Streptomyces coelicolor. J Bacteriol 194(24):6837–6846. doi:10.1128/JB.00695-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204(1):118–123

    Article  PubMed  Google Scholar 

  • Kormanec J, Sevcikova B (2002) Stress-response sigma factor sigma (H) directs expression of the gltB gene encoding glutamate synthase in Streptomyces coelicolor A3(2). Biochim et Biophys Acta. 1577(1):149–154

    Article  CAS  Google Scholar 

  • Laycock M, McInnes AG, Walter JA, Shapiro S, Vining LC (1985) Pathway of ammonium assimilation in Streptomyces venezuelae examined by amino acid analyses and 15 N nuclear magnetic resonance spectroscopy. Can J Microbiol 31(7):629–634

    Article  CAS  PubMed  Google Scholar 

  • Li R, Townsend CA (2006) Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Met Eng. 8(3):240–252. doi:10.1016/j.ymben.2006.01.003

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Botany. 53(370):979–987

    Article  CAS  Google Scholar 

  • Minambres B, Olivera ER, Jensen RA, Luengo JM (2000) A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J Biol Chem. 275(50):39529–39542. doi:10.1074/jbc.M005136200

    Article  CAS  PubMed  Google Scholar 

  • Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen OM, Sletta H, Alam MT, Merlo ME, Moore J, Omara WA, Morrissey ER, Juarez-Hermosillo MA, Rodriguez-Garcia A, Nentwich M, Thomas L, Iqbal M, Legaie R, Gaze WH, Challis GL, Jansen RC, Dijkhuizen L, Rand DA, Wild DL, Bonin M, Reuther J, Wohlleben W, Smith MC, Burroughs NJ, Martin JF, Hodgson DA, Takano E, Breitling R, Ellingsen TE, Wellington EM (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC genom 11:10. doi:10.1186/1471-2164-11-10

    Article  Google Scholar 

  • Ninfa AJ, Jiang P (2005) PII signal transduction proteins: sensors of alpha-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8(2):168–173. doi:10.1016/j.mib.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  • Penyige A, Keseru J, Fazakas F, Schmelczer I, Szirak K, Barabas G, Biro S (2009) Analysis and identification of ADP-ribosylated proteins of Streptomyces coelicolor M145. J Microbiol 47(5):549–556. doi:10.1007/s12275-009-0032-y

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe PJ (2013) Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol 591(Pt 8):2027–2042. doi:10.1113/jphysiol.2013.251470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rexer HU, Schaberle T, Wohlleben W, Engels A (2006) Investigation of the functional properties and regulation of three glutamine synthetase-like genes in Streptomyces coelicolor A3(2). Arch Microbiol 186(6):447–458. doi:10.1007/s00203-006-0159-8

    Article  CAS  PubMed  Google Scholar 

  • Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670–675. doi:10.1038/embor.2008.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. App Environ Microbiol. 72(11):7132–7139. doi:10.1128/AEM.01308-06

    Article  CAS  Google Scholar 

  • Sola-Landa A, Rodriguez-Garcia A, Amin R, Wohlleben W, Martin JF (2013) Competition between the GlnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor. NA Research 41(3):1767–1782. doi:10.1093/nar/gks1203

    CAS  Google Scholar 

  • Sprusansky O, Stirrett K, Skinner D, Denoya C, Westpheling J (2005) The bkdR gene of Streptomyces coelicolor is required for morphogenesis and antibiotic production and encodes a transcriptional regulator of a branched-chain amino acid dehydrogenase complex. J Bacteriol 187(2):664–671. doi:10.1128/JB.187.2.664-671.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauch E, Takano E, Baylis HA, Bibb MJ (1991) The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol 5(2):289–298

    Article  CAS  PubMed  Google Scholar 

  • Swiatek MA, Gubbens J, Bucca G, Song E, Yang YH, Laing E, Kim BG, Smith CP, van Wezel GP (2013) The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor. J Bacteriol 195(6):1236–1248. doi:10.1128/JB.02191-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vancurova I, Vancura A, Volc J, Kopecky J, Neuzil J, Basarova G, Behal V (1989) Purification and properties of NADP-dependent glutamate dehydrogenase from Streptomyces fradiae. J Gen Microbiol 135(12):3311–3318

    CAS  PubMed  Google Scholar 

  • Velvizhi S, Nagalashmi T, Essa MM, Dakshayani KB, Subramanian P (2002) Effects of alpha-ketoglutarate on lipid peroxidation and antioxidant status during chronic ethanol administration in Wistar rats. Polish J Pharmacol. 54(3):231–236

    CAS  Google Scholar 

  • Wentzel A, S. H, Consortium SE, Bruheim P (2012) Intracellular metabolite pool changes in response to nutrient depletion induced metabolic switching in Streptomyces coelicolor. Metabolites 2(1):178–194. doi:10.3390/metabo2010178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


Authors would like to appreciate the scientific comments from Prof. Gilles van Wezel, Leiden University, the Netherlands.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Songhee H. Kim or Byung-Gee Kim.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals formed by any of the authors.


This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2013R1A2A2A01069197).

Conflict of interest

Byung-Gee Kim declares that he has no conflict of interest. Songhee Kim declares that she has no conflict of interest.

Electronic supplementary materials


(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Kim, BG. NAD+-specific glutamate dehydrogenase (EC. in Streptomyces coelicolor; in vivo characterization and the implication for nutrient-dependent secondary metabolism. Appl Microbiol Biotechnol 100, 5527–5536 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: