Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 13, pp 6055–6068 | Cite as

A novel perchlorate- and nitrate-reducing bacterium, Azospira sp. PMJ

  • Ji-Hyun Nam
  • Jey-R S. Ventura
  • Ick Tae Yeom
  • Yongwoo Lee
  • Deokjin JahngEmail author
Environmental biotechnology

Abstract

A novel perchlorate-reducing bacterium (PCRB), PMJ, was isolated from the mixed liquor suspended solids in the aerobic tank of a wastewater treatment plant. The 16S ribosomal RNA (rRNA), perchlorate reductase, and chlorite dismutase gene sequences revealed that PMJ belonged to the genus Azospira. PMJ was removed high-strength (700 mg/L) perchlorate and also removed low-strength (≤50 mg/L) perchlorate below the detection limit (2 μg/L) when acetate was used as a sole and carbon source. The maximum specific perchlorate utilization rate, q max, was 0.96 mg ClO4 /mg dry cell weight day, and the half-saturation constant, K S , was lower than 0.002 mg ClO4 /L. PMJ also utilized inorganic electron donors [(H2, S0, and Fe(II)] with perchlorate as an electron acceptor. Perchlorate reduction by PMJ was completely inhibited by oxygen and chlorate but was not inhibited by nitrate. In the presence of similar concentrations (100∼140 mg/L) of nitrate and perchlorate, PMJ simultaneously removed both electron acceptors. Therefore, it was concluded that the strains PMJ might possess separate pathways for perchlorate and nitrate reduction. These results indicated that Azospira sp. PMJ could be efficiently used for treating perchlorate-contaminated groundwater and wastewater because many of these water bodies are known to contain both perchlorate and nitrate. In addition, low K S value and autotrophic perchlorate reduction of PMJ might be useful to design the biological treatment systems.

Keywords

Azospira sp. PMJ Perchlorate-reducing bacteria (PCRB) Simultaneous perchlorate and nitrate reduction Autotrophic perchlorate reduction Kinetic parameters 

Notes

Acknowledgments

This subject was supported by Korea Ministry of Environment (MOE) as “Advanced Technology Program for Environmental Industry” under grant No. 2013001340002.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2016_7401_MOESM1_ESM.pdf (328 kb)
ESM 1 (PDF 328 kb)

References

  1. Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD (2001) Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51:527–533. doi: 10.1099/00207713-51-2-527 CrossRefPubMedGoogle Scholar
  2. Balk M, van Gelder T, Weelink SA, Stams AJM (2008) Perchlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl Environ Microbiol 74:403–409. doi: 10.1128/AEM.01743-07 CrossRefPubMedGoogle Scholar
  3. Bardiya N, Bae JH (2011) Dissililatory perchlorate reduction: a review. Microbiol Res 166:237–254. doi: 10.1016/j.micres.2010.11.005 CrossRefPubMedGoogle Scholar
  4. Beishir L (1996) Microbiology in practice: a self-instructional laboratory course, 6th edn. Harper Collins College Publishers, New York, pp. 318–319Google Scholar
  5. Bruce RA, Achenbach LA, Coates JD (1999) Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ Microbiol 1:319–329. doi: 10.1046/j.1462-2920.1999.00042.x CrossRefPubMedGoogle Scholar
  6. Chaudhuri SK, O’Connor SM, Gustavson RL, Achenbach LA, Coates JD (2002) Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol 68:4425–4430. doi: 10.1128/AEM.68.9.4425-4430.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Choi H, Silverstein J (2008) Inhibition of perchlorate reduction by nitrate in a fixed biofilm reactor. J Hazard Mater 159:440–445. doi: 10.1016/j.jhazmat.2008.02.038 CrossRefPubMedGoogle Scholar
  8. Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2:569–580. doi: 10.1038/nrmicro926 CrossRefPubMedGoogle Scholar
  9. Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) The ubiquity and diversity of dissimilatory perchlorate reducing bacteria. Appl Environ Microbiol 65:5234–5241PubMedPubMedCentralGoogle Scholar
  10. Dudley M, Salamone A, Nerenberg R (2008) Kinetics of a chlorate-accumulating, perchlorate-reducing bacterium. Water Res 42:2403–2410. doi: 10.1016/j.watres.2008.01.009 CrossRefPubMedGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 CrossRefGoogle Scholar
  12. Frankenberger WT, Herman DC (2000) Bacterial removal of perchlorate and nitrate. US Patens US6077429 Applied 20 June 2000Google Scholar
  13. Gao M, Wang S, Jin C, She Z, Zhao C, Zhao Y, Zhang J, Ren Y (2015) Autotrophic perchlorate reduction kinetics of a microbial consortium using elemental sulfur as an electron donor. Environ Sci Pollut Res Int 22:9694–9703. doi: 10.1007/s11356-015-4147-x CrossRefPubMedGoogle Scholar
  14. Giblin T, Frankenberger WT (2001) Perchlorate and nitrate reductase activity in the perchlorate-respiring bacterium perclace. Microbiol Res 56:311–315. doi: 10.1078/0944-5013-00111 CrossRefGoogle Scholar
  15. Gregoire P, Engelbrektson A, Hubbard CG, Metlagel Z, Csencsits R, Auer M, Conrad ME, Thieme J, Northrup P, Coates JD (2014) Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction. Environ Microbiol Rep 6:558–564. doi: 10.1111/1758-2229.12156 CrossRefPubMedGoogle Scholar
  16. Herman DC, Frankenberger WT (1998) Microbial-mediated reduction of perchlorate in groundwater. J Environ Qual 27:750–754. doi: 10.2134/jeq1998.00472425002700040004x CrossRefGoogle Scholar
  17. Herman DC, Frankenberger WT (1999) Bacterial reduction of perchlorate and nitrate in water. J Environ Qual 28:1018–1024. doi: 10.2134/jeq1999.00472425002800030036x CrossRefGoogle Scholar
  18. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282. doi: 10.1093/bioinformatics/8.3.275 PubMedGoogle Scholar
  19. Ju X, Field JA, Sierra-Alvarez R, Salazar M, Bentley H, Bentley R (2007) Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnol Bioeng 96:1073–1082. doi: 10.1002/bit.21197 CrossRefPubMedGoogle Scholar
  20. Ju X, Sierra-Alvarez R, Field JA, Byrnes DJ, Bentley H, Bentley R (2008) Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere 71:114–122. doi: 10.1016/j.chemosphere.2007.09.045 CrossRefPubMedGoogle Scholar
  21. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581 CrossRefPubMedGoogle Scholar
  22. Korea Ministry of Environment (2010) Drinking water quality criteria mandatory monitoring contaminants. http://www.me.go.kr/home/web/board/read.do?menuId=69&boardMasterId=515&boardCategoryId=&boardId=80018. Accessed 28 June 2010
  23. Korenkov V, Romanenko V, Kuznetsov S, Voronov J (1976) Process for purification of industrial waste waters from perchlorates and chlorates. US Patents US3943055 Applied 3 July 1976Google Scholar
  24. Lack JG, Chaudhuri SK, Chakraborty R, Achenbach LA, Coates JD (2002) Anaerobic biooxidation of Fe (II) by Dechlorosoma suillum. Microb Ecol 43:424–431. doi: 10.1007/s00248-001-1061-1 CrossRefPubMedGoogle Scholar
  25. Logan BE, Zhang HS, Mulvaney P, Milner MG, Head IM, Unz RF (2001) Kinetics of perchlorate- and chlorate-respiring bacteria. Appl Environ Microbiol 67:2499–2506. doi: 10.1128/AEM.67.6.2499-2506.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Luo YH, Chen R, Wen LL, Meng F, Zhang Y, Lai CY, Rittmann BE, Zhao HP, Zheng P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49:2341–2349. doi: 10.1021/es504990m CrossRefPubMedGoogle Scholar
  27. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  28. Nerenberg R, Rittmann BE, Najim I (2002) Perchlorate reduction in a hydrogen-based membrane biofilm reactor. J Am Water Works Assoc 94:103–114Google Scholar
  29. Nerenberg R, Kawagoshi Y, Rittmann BE (2006) Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium. Water Res 40:3290–3296. doi: 10.1016/j.watres.2006.06.035 CrossRefPubMedGoogle Scholar
  30. Nor SJ, Lee SH, Cho KS, Cha DK, Lee KI, Ryu HW (2011) Microbial treatment of high-strength perchlorate wastewater. Bioresour Technol 102:835–841. doi: 10.1016/j.biortech.2010.08.127 CrossRefPubMedGoogle Scholar
  31. Okeke BC, Frankenberger WT (2003) Molecular analysis of a perchlorate reductase from a perchlorate-respiring bacterium perclace. Microbiol Res 158:337–344. doi: 10.1078/0944-5013-00213 CrossRefPubMedGoogle Scholar
  32. Okeke BC, Ma G, Cheng Q, Losi ME, Frankenberger WT (2007) Development of a perchlorate reductase-based biosensor for real time analysis of perchlorate in water. J Microbiol Methods 68:69–75. doi: 10.1016/j.mimet.2006.06.007 CrossRefPubMedGoogle Scholar
  33. Rikken GB, Kroon AGM, van Ginkel CG (1996) Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biotechnol 45:420–426. doi: 10.1007/s002530050707 CrossRefGoogle Scholar
  34. Shrout JD, Scheetz TE, Casavant TL, Parkin GF (2005) Isolation and characterization of autotrophic, hydrogen utilizing, perchlorate-reducing bacteria. Appl Microbiol Biotechnol 67:261–268. doi: 10.1007/s00253-004-1725-0 CrossRefPubMedGoogle Scholar
  35. Srinivasan R, Sorial GA (2009) Treatment of perchlorate in drinking water: a critical review. Sep Purif Technol 69:7–21. doi: 10.1016/j.seppur.2009.06.025 CrossRefGoogle Scholar
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Thrash JC, Pollock J, Torok T, Coates JD (2010) Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov. Appl Microbiol Biotechnol 86:335–343. doi: 10.1007/s00253-009-2336-6 CrossRefPubMedGoogle Scholar
  39. Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417. doi: 10.1016/j.femsec.2004.04.011 CrossRefPubMedGoogle Scholar
  40. Urbansky ET, Schock MR (1999) Issues in managing the risks associated with perchlorate in drinking water. J Environ Manag 56:79–95. doi: 10.1006/jema.1999.0274 CrossRefGoogle Scholar
  41. US Environmental Protection Agency 2005 State perchlorate advisory levels as of 4/20/05. https://clu-in.org/download/contaminantfocus/perchlorate/stateadvisorylevels.pdf
  42. US Environmental Protection Agency 2009 Revised assessment guidance for perchlorate. http://www.epa.gov/sites/production/files/documents/perchlorate_memo_01-08-09.pdf. Accessed 8 Jan 2009
  43. Van Ginkel CG, Rikken GB, Kroon AG, Kengen SW (1996) Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch Microbiol 166:321–326Google Scholar
  44. Van Ginkel SW, Lamendella R, Kovacik WP, Santo Domingo JW, Rittmann BE (2010) Microbial community structure during nitrate and perchlorate reduction in ion-exchange brine using the hydrogen-based membrane biofilm reactor (MBfR). Biores Technol 101:3747–3750. doi: 10.1016/j.biortech. 2009.12.028 CrossRefGoogle Scholar
  45. Wallace W, Ward T, Breen A, Attaway H (1996) Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J Ind Microbiol 16:68–72. doi: 10.1007/BF01569924 CrossRefGoogle Scholar
  46. Wallace W, Beshear S, Williams D, Hospadar S, Owens M (1998) Perchlorate reduction in a mixed culture in an up-flow anaerobic fixed bed reactor. J Ind Microbiol Biotechnol 20:126–131. doi: 10.1038/sj.jim.2900494 CrossRefGoogle Scholar
  47. Waller AS, Cox EE, Edwards EA (2004) Perchlorate-reducing microorganisms isolated from contaminated sites. Environ Microbiol 6:517–527. doi: 10.1111/j.1462-2920.2004.00598.x CrossRefPubMedGoogle Scholar
  48. Xu J, Trimble JJ, Steinberg L, Logan BE (2004) Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Water Res 38:673–680. doi: 10.1016/j.watres.2003.10.017 CrossRefPubMedGoogle Scholar
  49. Xu X, Gao B, Jin B, Zhen H, Wang X, Dai M (2015) Study of microbial perchlorate reduction: considering of multiple pH, electron acceptors and donors. J Hazard Mater 285:228–235. doi: 10.1016/j.jhazmat.2014.10.061 CrossRefPubMedGoogle Scholar
  50. Yu X, Amrhein C, Deshusses MA, Matsumoto MR (2007) Perchlorate reduction by autotrophic bacteria attached to zerovalent iron in a flow-through reactor. Environ Sci Technol 41:990–997. doi: 10.1021/es061959a CrossRefPubMedGoogle Scholar
  51. Zhang H, Bruns MA, Logan BE (2002) Perchlorate reduction by a novel chemolithoautotraphic hydrogen-oxidizing bacterium. Environ Microbiol 4:570–576. doi: 10.1046/j.1462-2920.2002.00338.x CrossRefPubMedGoogle Scholar
  52. Zhao HP, Van Ginkel S, Tang Y, Kang DW, Rittmann B, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45:10155–10162. doi: 10.1021/es202569b CrossRefPubMedGoogle Scholar
  53. Zhu Y, Gao N, Chu W, Wang S, Xu J (2016) Bacterial reduction of highly concentrated perchlorate: kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere 148:188–194. doi: 10.1016/j.chemosphere.2015.10.130

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ji-Hyun Nam
    • 1
  • Jey-R S. Ventura
    • 2
  • Ick Tae Yeom
    • 3
  • Yongwoo Lee
    • 4
  • Deokjin Jahng
    • 1
    Email author
  1. 1.Department of Environmental Engineering and EnergyMyongji UniversityYongin-siRepublic of Korea
  2. 2.Department of Engineering Science, College of Engineering and Agro-Industrial TechnologyUniversity of the Philippines Los BañosLos BañosPhilippines
  3. 3.Department of Civil and Environmental EngineeringSungkyunkwan UniversitySuwon-siRepublic of Korea
  4. 4.Chemistry and Applied Chemistry, College of Science and TechnologyHanyang UniversityAnsan-siRepublic of Korea

Personalised recommendations