Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 9, pp 3825–3839 | Cite as

A breakthrough in enzyme technology to fight penicillin resistance—industrial application of penicillin amidase

  • Klaus Buchholz
Mini-Review

Abstract

Enzymatic penicillin hydrolysis by penicillin amidase (also penicillin acylase, PA) represents a Landmark: the first industrially and economically highly important process using an immobilized biocatalyst. Resistance of infective bacteria to antibiotics had become a major topic of research and industrial activities. Solutions to this problem, the antibiotics resistance of infective microorganisms, required the search for new antibiotics, but also the development of derivatives, notably penicillin derivatives, that overcame resistance. An obvious route was to hydrolyse penicillin to 6-aminopenicillanic acid (6-APA), as a first step, for the introduction via chemical synthesis of various different side chains. Hydrolysis via chemical reaction sequences was tedious requiring large amounts of toxic chemicals, and they were cost intensive. Enzymatic hydrolysis using penicillin amidase represented a much more elegant route. The basis for such a solution was the development of techniques for enzyme immobilization, a highly difficult task with respect to industrial application. Two pioneer groups started to develop solutions to this problem in the late 1960s and 1970s: that of Günter Schmidt-Kastner at Bayer AG (Germany) and that of Malcolm Lilly of Imperial College London. Here, one example of this development, that at Bayer, will be presented in more detail since it illustrates well the achievement of a solution to the problems of industrial application of enzymatic processes, notably development of an immobilization method for penicillin amidase suitable for scale up to application in industrial reactors under economic conditions. A range of bottlenecks and technical problems of large-scale application had to be overcome. Data giving an inside view of this pioneer achievement in the early phase of the new field of biocatalysis are presented. The development finally resulted in a highly innovative and commercially important enzymatic process to produce 6-APA that created a new antibiotics industry and that opened the way for the establishment of over 100 industrial processes with immobilized biocatalysts worldwide today.

Keywords

Immobilized enzymes Biocatalyst application Penicillin amidase Enzymatic penicillin hydrolysis Bioprocess development 

Notes

Acknowledgments

Valuable suggestions, corrections, and considerable improvement by Uwe Bornscheuer and John Collins are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The author declares that he has no competing interests.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abraham EP, Chain E (1940) "An enzyme from bacteria able to destroy penicillin". Nature 146:837CrossRefGoogle Scholar
  2. AIChE (1970) "The history of penicillin production." Chem. Eng. Progr. Symp. Ser. No. 100. American Institute of Chemical Engineers, –New YorkGoogle Scholar
  3. Batchelor FR, Chain EB, Richards M, Rolinson GN (1961) "6-Aminopenicillanic acid. VI. Formation of 6-aminopenicillanic acid from penicillin by enzymic hydrolysis". Royal Soc Proceed B 154:957Google Scholar
  4. Batchelor FR, Doyle FP, Nayler JH, Rolinson GN (1959) "Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations". Nature 183:257–258CrossRefPubMedGoogle Scholar
  5. Bauer K, Kaufmann W (1960) "Enzymatische synthese von alpha-phenoxypropionyl-6-aminopenicillansäure". Naturwiss 47:469CrossRefGoogle Scholar
  6. Boemer B, Bartl H, Rauenbusch E, Hueper F, Schmidt-Kastner G (1973a) Vernetzte Copolymerisate Bayer AG. Germany DE 2215509.Google Scholar
  7. Boemer B, Bartl H, Rauenbusch E, Hueper F, Schmidt-Kastner G (1973b) Vernetzte Copolymerisate Bayer AG. Germany DE 2215512Google Scholar
  8. Borchert A, Buchholz K (1984) "Improved biocatalyst effectiveness by controlled immobilization of enzymes". Biotechnol Bioeng 26:727–736CrossRefPubMedGoogle Scholar
  9. Borkar PS (1961) Penicillin acylases. Hindustan Antibiot Bull 4:152Google Scholar
  10. Bornscheuer U, Buchholz K (2005) "Highlights in biocatalysis—historical landmarks and current trends". Eng Life Sci 5:309–323CrossRefGoogle Scholar
  11. Brandl E, Kleiber W, Knauseder F (1971) Aminopenicillanic acid. Biochemie Kundl. Germany. DE 2058371 A 19710603.Google Scholar
  12. Bruggink AE (2001) Synthesis of ß-lactam antibiotics. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  13. Brümmer W, Hennrich N, Klockow M, Lang H, Orth HD (1972) "Preparation and properties of carrier-bound enzymes". Eur J Biochem 25:129–135CrossRefPubMedGoogle Scholar
  14. Buchholz K, Borchert A (1978) Verfahren zur Herstellung wasserunlöslicher, an einen porösen Träger kovalent gebundener Proteine. Dechema. Germany. 28 05 366.8.Google Scholar
  15. Buchholz K, Collins J (2010) Concepts in biotechnology—history, science and business. Wiley-VCH, Weinheim (Germany)Google Scholar
  16. Buchholz K, (ed) (1979a) Characterization of immobilized biocatalysts. VCH,Weinheim, (Germany)Google Scholar
  17. Buchholz K, (1979b)Characteristic properties and summary of determination methods. VCH, Weinheim(Germany), pp 1–48Google Scholar
  18. Buchholz K, Kasche V, Bornscheuer U (2012) Biocatalysts and enzyme technology. Wiley-VCH, Weinheim (Germany)Google Scholar
  19. Buchholz K, Klein J (1987) "Characterization of immobilized biocatalysts". Methods Enzymol Mosbach K(ed) 135:3–21CrossRefGoogle Scholar
  20. Bud R (1994) The uses of life: a history of biotechnology. Cambridge University Press, CambridgeGoogle Scholar
  21. Bud R (2007) Penicillin: triumph and tragedy. Oxford University Press, OxfordGoogle Scholar
  22. Carleysmith S, Dunnill P, Lilly MD (1980) "Kinetic behavior of immobilized penicillin acylase". Biotechnol Bioeng 22(4):735–756CrossRefGoogle Scholar
  23. Carrington TR (1971) "The development of commercial processes for the production of 6-aminopenicillanic acid (6-APA).". Proc R Soc Lond Ser B 179(No. 1057):321–333CrossRefGoogle Scholar
  24. Carrington T R, Savidge T A, Thomas A, Walmsley M F (1966) Penicillin-splitting enzymes. Beecham, Great Britain, GB 1015554 19660105Google Scholar
  25. Claridge CA, Luttinger JR, Lein J (1963) "Specificity of penicillin amidases". Exp Biol Med 113:1008–1012CrossRefGoogle Scholar
  26. Cole M (1966) "Formation of 6-aminopenicillanic acid, penicillins, and penicillin acylase by various fungi". Appl Environ Microbiol 14:98–104Google Scholar
  27. Cole M (1969) "Penicillins and other acylamino compounds synthesized by the cell-bound penicillin acylase of Escherichia coli". Biochem J 115:747–756CrossRefPubMedPubMedCentralGoogle Scholar
  28. Collins J, Hohn B (1978) "Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads". Proc Natl Acad Sci U S A 75:4242–4246CrossRefPubMedPubMedCentralGoogle Scholar
  29. Davies J, Davies D (2010) "Origins and evolution of antibiotic resistance". Microbiol Mol Biol Rev 74:417–433CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dechema (1974) Biotechnologie. Dechema, Frankfurt (Germany)Google Scholar
  31. Demain AL, Vandamme E, Buchholz K, Collins J (2015) History of industrial biotechnology. Wiley-VCH, Weinheim (GermanyGoogle Scholar
  32. Fritz Wolf K, Koller KP, Lange G, Liesum A, Sauber K, Schreuder H, Aretz W, Kabsch W (2002) "Structure based prediction of modifications in glutarylamidase to allow single step enzymatic production of 7 aminocephalosporanic acid from cephalosporin C". Protein Sci 11(1):92–103CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gabel D, Katchalski E, Steinberg IZ (1971) Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence. Biochemistry 10:4661–4669CrossRefPubMedGoogle Scholar
  34. Gottstein W J, Cheney L C (1965) 6-(α-Amino-α-aryl-acetamido)thiopenicillanic acids. Bristol-Myers. Belgium. BE 652599 19650302Google Scholar
  35. Grubhofer N, Schleith L (1953) "Modifizierte Ionenaustauscher als spezifische Adsorbentien". Naturwissenschaften 40(19):508–508CrossRefGoogle Scholar
  36. Hamilton-Miller J (1966) "Penicillinacylase". Bacteriol Rev 30:761–771PubMedPubMedCentralGoogle Scholar
  37. Huang H, Seto T, Shull GM (1963) "Distribution and substrate specificity of benzylpenicillin acylase". Appl Microbiol 11(1):1–6PubMedPubMedCentralGoogle Scholar
  38. Hueper F (1973a) Immobilized penicillinacylase Bayer AG Germany DE 2157972.Google Scholar
  39. Hueper F (1973b) 6-Aminopenicillansäure. Bayer AG Germany DE 2157970Google Scholar
  40. Hueper F (1974a) Wasserlösliche, kovalent an polymere Träger gebundene Penicillinacylase, Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von 6-Aminopenicillansäure. Bayer AG, Germany. DE 2312824.Google Scholar
  41. Hueper F (1974b) Verfahren zur Herstellung von 7-Amino-Δ3-cephem derivaten (7-Amino-Δ3-cephem derivatives). Bayer AG, Germany. DE 2409569.Google Scholar
  42. Hueper F, Oberheiden (1977). Purification of products resulting from the enzymic splitting of β-lactam antibiotics. Bayer AG, Germany. DE 2528622Google Scholar
  43. Hueper F, Rauenbusch E, Schmidt-Kastner G, Boemer B, Bartl H (1973b) Neue wasserunlösliche Enzym-, insbesondere Penicillinacylase- oder Enzyminhibitor-Präparate. Bayer AG Germany DE 2215539Google Scholar
  44. Hueper F, Rauenbusch E, Schmidt-Kastner G, Bömer B, Bartl H (1972). Neue wasserunlösliche Proteinpräparate. BayerAG, Germany DE 22 15 687.Google Scholar
  45. Johnson D A, Hardcastle G A (1967a) Preparation of 6-aminopenicillanic acid. Bristol-Myers Co., USA, US 3, 297, 546Google Scholar
  46. Johnson D A, Hardcastle G A (1969) Fermentation process. Bristol-Myers, Great Britain, GB 1174045 19691210Google Scholar
  47. Johnson D A, Hardcastle G A (1967b) Preparation of 6-aminopenicillanic acid. Bristol-Myers. USA. US 3297546 19670110Google Scholar
  48. Kaufmann W, Bauer K (1959). Verfahren zur Herstellung von 6-Aminopenicillansäure. Bayer AG, Germany.DE1111778Google Scholar
  49. Kaufmann W, Bauer K (1960a) Enzymatische Spaltung und Resynthese von Penicillin. Naturwissenschaften 47(20):474–475CrossRefGoogle Scholar
  50. Kaufmann W, Bauer K (1960b) "Enzymatische Synthese von alpha-Phenoxypropionyl-6- aminopenicillansäure". Naturwiss 47:469CrossRefGoogle Scholar
  51. Kaufmann W, Bauer K (1960c) Enzymatische Spaltung und Resynthese von Penicillin. Naturwiss 47:474CrossRefGoogle Scholar
  52. Kaufmann W, Bauer K (1964) Variety of substrates for a bacterial benzyl penicillin-splitting enzyme. Nature 203:520CrossRefPubMedGoogle Scholar
  53. Kaufmann W, Bauer K, Hueper F (1970). Inactivation of penicillinase by shaking with water-insoluble solvents. Bayer GA, Germany. DE 1902420Google Scholar
  54. Kaufmann W, Bauer K, Offe HA (1961) "Cleavage and resynthesis of penicillins." Antimicrob Agents Ann 1960:1–5Google Scholar
  55. Kutzbach C (1973). Purification of penicillinamidase from Escherichia coli. Bayer AG, Germany. DE 2217745Google Scholar
  56. Kutzbach K (1971). Verfahren zur Herstellung reiner kristalliner Penicillinacylase. BayerAG, Germany. DE 21 51 236.Google Scholar
  57. Kutzbach C, Rauenbusch E (1974) Preparation and general properties of crystalline penicillin. Hoppe-Sellers Z Physiol Chem 354:45–53Google Scholar
  58. Levin Y, Pecht M, Goldstein L, Katchalski E (1964) A water-insoluble polyanionic derivative of trypsin. I Preparation and Properties. Biochemistry 3:1905–1913CrossRefPubMedGoogle Scholar
  59. Lilly M D, Kay G, Wilson R J, Sharp A K (1972). Insolubilized enzymes and their preparation and use Brit Amended Great Britain GB 1183260 19720501.Google Scholar
  60. Manecke G, Ehrenthal E, Schlünsen J (1979)Chemical basis and composition of carriers. InBuchholz K (ed) Characterization of Immobilized Biocatalysts. VCH,Weinheim, (Germany)Google Scholar
  61. Manecke G, Gillert K-E (1955) "Serologisch spezifische Adsorbentien". Naturwissenschaften 42(8):212–213CrossRefGoogle Scholar
  62. Manecke G, Pohl R, Schluensen J, Vogt HG (1978) Some reactive carriers and immobilized enzymes. Enzym Eng 4:409–412CrossRefGoogle Scholar
  63. Manecke G, Günzel G (1967) Polymere Isothiocyanate zur Darstellung hochwirksamer Enzymharze. Naturwissenschaften 54:531–533CrossRefPubMedGoogle Scholar
  64. Marconi W, Cecere F, Morisi F, Della PG, Rappuoli B (1973) "Hydrolysis of penicillin G to 6-aminopenicillanic acid by entrapped penicillin acylase". J Antibiot 26:228–232CrossRefPubMedGoogle Scholar
  65. Mayer H, Collins J, Wagner F (1980) Cloning of the penicillin G-acylase gene of Escherichia coli ATCC 11105 on multicopy plasmids. In: Weetall H H, Royer G P (eds). Enzym Eng Plenum Press N Y 5:61–69CrossRefGoogle Scholar
  66. Melrose GJH (1971) "Insolubilized enzymes: biochemical applications of synthetic polymers". Rev Pure Appl Chem 21:83–119Google Scholar
  67. Micheel F, Ewers J (1949) "Synthese von Verbindungen der Cellulose mit Eiweißstoffen". Makromol Chem 3:200–249CrossRefGoogle Scholar
  68. Mosbach KE (1987) Immobilized cells and enzymes. Academic Press New York, Part BGoogle Scholar
  69. Murao S (1955) "Studies on penicillin-amidase. Part 3. Researches of penicillin-amidase mechanism on Na-penicillin G". J. Agric. Chem. Soc. Japan 29:400–404Google Scholar
  70. Murao S (1962) Purification of penicillinamidase. Nippon Nogei Kagaku Kaishi, JP 37003537 B4 19620605Google Scholar
  71. Rolinson GN, Batchelor FR, Butterworth D, Cameron-Wood J, Cole M, Eustache GC, Hart MV, Richards M, Chain EB (1960) Formation of 6-aminopenicillanic acid from penicillin by enzymatic hydrolysis. Nature 187:236–237CrossRefPubMedGoogle Scholar
  72. Rolinson GN, Geddes AM (2007) "The 50th anniversary of the discovery of 6-aminopenicillanic acid (6-APA)". Int J Antimicrob Agents 29(1):3–8CrossRefPubMedGoogle Scholar
  73. Rübsamen-Schaeff H (2014) "Wenn Antibiotika nicht mehr helfen". BIOspektrum 20:367CrossRefGoogle Scholar
  74. Sakaguchi K, Murao S (1950a) A Preliminary report on a new enzyme, “Penicillin-amidase”. J. Agric. Chem. Soc. (Japan), 23: 411Google Scholar
  75. Sakaguchi K, Murao S (1950b) "A new enzyme, penicillin-amidase". Nippon Nogei Kagaku Kaishi 23:411CrossRefGoogle Scholar
  76. Schmidt-Kastner G, Bohne A (1954) Herstellung von Actinomycinen. Bayer AG, Germany. DE944395Google Scholar
  77. Self DA, Kay G, Lilly MD (1969) "The conversion of benzyl penicillin to 6-aminopenieillanie acid using an insoluble derivative of penicillin amidase". Biotechnol Bioeng 11:337–348CrossRefPubMedGoogle Scholar
  78. Silman I, Katchalski E (1966) "Water-insoluble derivatives of enzymes, antigens, and antibodies". Annu Rev Biochem 35(1):873–908CrossRefPubMedGoogle Scholar
  79. Szentirmai A (1966) Properties of penicillin acylase isolated from Escherichia coli. Acta Microbiol Acad Sci Hung 12:395Google Scholar
  80. Tosa T, Mori T, Fusa N, Chibata I (1969) Studies on continuous enzyme reactions. Agric Biol Chem 33:1047–1056CrossRefGoogle Scholar
  81. Weetall HH, Royer GP (eds) (1976, 1978, 1980) Enzyme engineering. Plenum Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Chemical EngineeringTechnical University BraunschweigBraunschweigGermany

Personalised recommendations