Applied Microbiology and Biotechnology

, Volume 100, Issue 8, pp 3781–3798 | Cite as

Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica

  • Andrew M. Silverman
  • Kangjian Qiao
  • Peng Xu
  • Gregory StephanopoulosEmail author
Bioenergy and biofuels


Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain’s ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH availability for fatty acid synthesis. Taken together, our study demonstrates that the overall kinetics of microbial lipid synthesis is sensitive to a wide variety of factors. Fully optimizing a strain for single cell oil processes could involve manipulating and balancing many of these factors, and, due to mechanistic differences by which each gene product investigated here impacts lipid synthesis, there is a high likelihood that many of these genes will work synergistically to further increase lipid production when simultaneously overexpressed.


Lipogenesis Metabolic engineering Gene expression Fermentation 



This material is based upon work supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science program, under Award Number DE-SC0008744.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2016_7376_MOESM1_ESM.pdf (408 kb)
ESM 1 (PDF 407 kb)


  1. Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev 11(7):1388–1413. doi: 10.1016/j.rser.2005.12.004 CrossRefGoogle Scholar
  2. Augstein A, Barth K, Gentsch M, Kohlwein SD, Barth G (2003) Characterization, localization and functional analysis of Gpr1p, a protein affecting sensitivity to acetic acid in the yeast Yarrowia lipolytica. Microbiology 149(3):589–600. doi: 10.1099/mic.0.25917-0 CrossRefPubMedGoogle Scholar
  3. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M-T, Hapala I, Papanikolaou S, Chardot T, Nicaud J-M (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779–7789. doi: 10.1128/AEM.01412-08 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009a) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387. doi: 10.1016/j.plipres.2009.08.005 CrossRefPubMedGoogle Scholar
  5. Beopoulos A, Chardot T, Nicaud JM (2009b) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91(6):692–696. doi: 10.1016/j.biochi.2009.02.004 CrossRefPubMedGoogle Scholar
  6. Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biot 90(4):1193–1206CrossRefGoogle Scholar
  7. Blazeck J, Liu L, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microb 77(22):7905–7914. doi: 10.1128/AEM.05763-11 CrossRefGoogle Scholar
  8. Casal M, Cardoso H, Leao C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142:1385–1390CrossRefPubMedGoogle Scholar
  9. Chen DC, Beckerich JM, Gaillardin C (1997) One-step transformation of the dimorphic yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 48:232–235. doi: 10.1007/s002530051043 CrossRefPubMedGoogle Scholar
  10. Coleman RA, Lee DP (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43(2):134–176. doi: 10.1016/S0163-7827(03)00051-1 CrossRefPubMedGoogle Scholar
  11. Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141(1–2):31–41. doi: 10.1016/j.jbiotec.2009.02.018 CrossRefPubMedGoogle Scholar
  12. De la Peña Mattozzi M., Kang Y., & Keasling J. D. (2010). Feast: choking on acetyl-CoA, the glyoxylate shunt, and acetyl-CoA-driven metabolism. Handb Hydrocarb Lipid Microbiol 1649–1660. doi: 10.1007/978-3-540-77587-4
  13. Demirbas A (2007) Importance of biodiesel as transportation fuel. Energ Policy 35(9):4661–4670. doi: 10.1016/j.enpol.2007.04.003 CrossRefGoogle Scholar
  14. Dulermo T, Nicaud J-M (2011) Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13(5):482–491. doi: 10.1016/j.ymben.2011.05.002 CrossRefPubMedGoogle Scholar
  15. Dunn RO (2011) Improving the cold flow properties of biodiesel by fractionation. Soybean - Appl Technol 975(2). doi: 10.5772/14624
  16. Endoh-Yamagami S, Hirakawa K, Morioka D, Fukuda R, Ohta A (2007) Basic helix-loop-helix transcription factor heterocomplex of Yas1p and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica. Eukaryot Cell 6(4):734–743. doi: 10.1128/EC.00412-06 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Meth 55(3):727–737. doi: 10.1016/j.mimet.2003.07.003 CrossRefGoogle Scholar
  18. Fickers P, Benetti P-H, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud J-M (2005) Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543. doi: 10.1016/j.femsyr.2004.09.004 CrossRefPubMedGoogle Scholar
  19. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  20. Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technol 114:443–449. doi: 10.1016/j.biortech.2012.02.091 CrossRefGoogle Scholar
  21. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi: 10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  22. Griffiths MJ, Van Hille RP, Harrison STL (2010) Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45(11):1053–1060CrossRefPubMedGoogle Scholar
  23. Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. BBA-Mol Cell Biol L 1811(12):1165–1175. doi: 10.1016/j.bbalip.2011.07.015 Google Scholar
  24. Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349. doi: 10.1534/genetics.111.130286 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. P Natl Acad Sci USA 103:11206–11210. doi: 10.1073/pnas.0604600103 CrossRefGoogle Scholar
  26. Hirakawa K, Kobayashi S, Inoue T, Endoh-Yamagami S, Fukuda R, Ohta A (2009) Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J Biol Chem 284(11):7126–7137. doi: 10.1074/jbc.M806864200 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16(1):143–169. doi: 10.1016/j.rser.2011.07.143 CrossRefGoogle Scholar
  28. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098. doi: 10.1021/cr068360d CrossRefPubMedGoogle Scholar
  29. Ivashov VA, Zellnig G, Grillitsch K, Daum G (2013) Identification of triacylglycerol and steryl ester synthases of the methylotrophic yeast Pichia pastoris. BBA-Mol Cell Biol L 1831(6):1158–1166. doi: 10.1016/j.bbalip.2013.03.004 Google Scholar
  30. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070. doi: 10.1016/j.fuproc.2004.11.002 CrossRefGoogle Scholar
  31. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2014) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588. doi: 10.1038/nature14136 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lazar Z, Dulermo T, Neuvéglise C, Crutz-Le Coq AM, Nicaud JM (2014) Hexokinase-a limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng 26:89–99. doi: 10.1016/j.ymben.2014.09.008 CrossRefPubMedGoogle Scholar
  33. Lin H, Castro NM, Bennett GN, San KY (2006) Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl Microbiol Biot 71:870–874. doi: 10.1007/s00253-005-0230-4 CrossRefGoogle Scholar
  34. Liu H, Zhao X, Wang F, Li Y, Jiang X, Ye M (2009) Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. FEMS Yeast Res 2011(11):553–566CrossRefGoogle Scholar
  35. Liu H, Zhao X, Wang F, Jiang X, Zhang S, Ye M, Zhao ZK, Zou H (2011) The proteome analysis of oleaginous yeast Lipomyces starkeyi. FEMS Yeast Res 11(1):42–51. doi: 10.1111/j.1567-1364.2010.00687.x CrossRefPubMedGoogle Scholar
  36. Mackall JC, Lane MD (1977) Role of pyruvate carboxylase in fatty acid synthesis: alterations during preadipocyte differentiation. Biochem Bioph Res Co 79(3):720–725. doi: 10.1016/0006-291X(77)91171-8 CrossRefGoogle Scholar
  37. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34(1):1–5. doi: 10.1016/j.renene.2008.04.014 CrossRefGoogle Scholar
  38. Merkler DJ, Wali AS, Taylor J, Schramm VL (1989) AMP deaminase from yeast: role in AMP degradation, large scale purification, and properties of the native and proteolyzed enzyme. J Biol Chem 264(35):21422–21430PubMedGoogle Scholar
  39. Miclet E, Stoven V, Michels PAM, Opperdoes FR, Lallemand JY, Duffieux F (2001) NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J Biol Chem 276(37):34840–34846. doi: 10.1074/jbc.M105174200 CrossRefPubMedGoogle Scholar
  40. Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M (2011) Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS ONE 6(11):e27966. doi: 10.1371/journal.pone.0027966 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Müller S, Sandal T, Kamp-Hansen P, Dalbøge H (1998) Comparison of Expression Systems in the yeasts Klyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, and Yarrowia lipolytica. Cloning of two Novel Promoters from Yarrowia lipolytica. Yeast 14:1267–1283CrossRefPubMedGoogle Scholar
  42. Müllner H, Daum G (2004) Dynamics of neutral lipid storage in yeast. Acta Biochim Pol 51(2):323–347PubMedGoogle Scholar
  43. Nicaud JM, Fabre E, Gaillardin C (1989) Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet 16(4):253–260CrossRefPubMedGoogle Scholar
  44. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49CrossRefPubMedGoogle Scholar
  45. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58(3):308–312. doi: 10.1007/s00253-001-0897-0 CrossRefPubMedGoogle Scholar
  46. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46(2):0124–0130CrossRefGoogle Scholar
  47. Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Tech 111(12):1221–1232CrossRefGoogle Scholar
  48. Qiao K, Imama Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, Ajikumar PK, Stephanopoulos G (2015) Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29:56–65. doi: 10.1016/j.ymben.2015.02.00
  49. Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90(2):159–168. doi: 10.1016/S0960-8524(03)00114-7 CrossRefPubMedGoogle Scholar
  50. Rajakumari S, Daum G (2010) Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. J Biol Chem 285(21):15769–15776. doi: 10.1074/jbc.M109.076331 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268. doi: 10.1016/j.biortech.2008.06.039 CrossRefPubMedGoogle Scholar
  52. Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30(6):47–50CrossRefGoogle Scholar
  53. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815. doi: 10.1016/j.biochi.2004.09.017 CrossRefPubMedGoogle Scholar
  54. Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. P Natl Acad Sci USA 98(13):7037–7044. doi: 10.1073/pnas.121145898 CrossRefGoogle Scholar
  55. Rossi, M., Amaretti, A., Raimondi, S., & Leonardi, A. (2011). Getting lipids for biodiesel production from oleaginous fungi. Biodiesel-Feedstocks and Processing Technologies. ISBN: 978–953-307-713-0, InTechGoogle Scholar
  56. Ruiz A, Xu X, Carlson M (2011) Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. P Natl Acad Sci USA 108(16):6349–6354. doi: 10.1073/pnas.1102758108 CrossRefGoogle Scholar
  57. Rustad TR, Minch KJ, Ma S, Winkler JK, Hobbs S, Hickey M, Brabant W, Turkarslan S, Price ND, Baliga NS, Sherman DR (2014) Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network. Genome Biol 15:1–11. doi: 10.1186/s13059-014-0502-3 CrossRefGoogle Scholar
  58. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL press, Cold Spring Harbor, NY, USAGoogle Scholar
  59. Schmidt C, Ploier B, Koch B, Daum G (2012) Analysis of yeast lipid droplet proteome and lipidome. Method Cell Biol 116:15–37CrossRefGoogle Scholar
  60. Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68(3):501–517. doi: 10.1128/MMBR.68.3.501-517.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Seip J, Jackson R, He H, Zhu Q, Hong S-P (2013) Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol 79(23):7360–7370. doi: 10.1128/AEM.02079-13 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. P Natl Acad Sci USA 106(6):1704–1709. doi: 10.1073/pnas.0812721106 CrossRefGoogle Scholar
  63. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–805CrossRefPubMedGoogle Scholar
  64. Tai M (2012). Metabolic Engineering of Oleaginous Yeast for the Production of Biofuels. Ph.D. Thesis. Massachusetts Institute of TechnologyGoogle Scholar
  65. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9. doi: 10.1016/j.ymben.2012.08.007 CrossRefPubMedGoogle Scholar
  66. Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21. doi: 10.1006/mben.2001.0204 CrossRefPubMedGoogle Scholar
  67. Thiam AR, Farese RV, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14(12):775–786. doi: 10.1038/nrm3699 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Verbeke J, Beopoulos A, Nicaud J-M (2013) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett 35(4):571–576. doi: 10.1007/s10529-012-1107-0 CrossRefPubMedGoogle Scholar
  69. Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441. doi: 10.1111/j.1467-7652.2007.00252.x CrossRefPubMedGoogle Scholar
  70. Wakil SJ, Stoops JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52:537–579. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  71. Wasylenko TM, Ahn WS, Stephanopoulos G (2015) The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng 30:27–39. doi: 10.1016/j.ymben.2015.02.007 CrossRefPubMedGoogle Scholar
  72. Wenz P, Schwank S, Hoja U, Schüller HJ (2001) A downstream regulatory element located within the coding sequence mediates autoregulated expression of the yeast fatty acid synthase gene FAS2 by the FAS1 gene product. Nucleic Acids Res 29(22):4625–4632. doi: 10.1093/nar/29.22.4625 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101(15):6124–6129. doi: 10.1016/j.biortech.2010.02.111 CrossRefPubMedGoogle Scholar
  74. Wu S, Zhao X, Shen H, Wang Q, Zhao ZK (2011) Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102(2):1803–1807. doi: 10.1016/j.biortech.2010.09.033 CrossRefPubMedGoogle Scholar
  75. Xue Z, Sharpe PL, Hong S-P, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31(8):734–740. doi: 10.1038/nbt.2622 CrossRefPubMedGoogle Scholar
  76. Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153(Pt 7):2013–2025. doi: 10.1099/mic.0.2006/002683-0 CrossRefPubMedGoogle Scholar
  77. Zhang H, Damude HG, Yadav NS (2012) Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica. Yeast 29:25–38. doi: 10.1002/yea.1914 CrossRefPubMedGoogle Scholar
  78. Zhang H, Zhang L, Chen H, Chen YQ, Ratledge C, Song Y, Chen W (2013) Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotechnol Lett 35(12):2091–2098. doi: 10.1007/s10529-013-1302-7 CrossRefPubMedGoogle Scholar
  79. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1045–1062CrossRefGoogle Scholar
  80. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Comm 3:1112. doi: 10.1038/ncomms2112 CrossRefGoogle Scholar
  81. Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923. doi: 10.1105/tpc.9.6.909 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrew M. Silverman
    • 1
  • Kangjian Qiao
    • 1
  • Peng Xu
    • 1
  • Gregory Stephanopoulos
    • 1
    Email author
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations