Applied Microbiology and Biotechnology

, Volume 100, Issue 7, pp 2993–3007 | Cite as

Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability

  • Jianyun Wang
  • Yusuf Cagatay Ersan
  • Nico Boon
  • Nele De BelieEmail author


The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.


Bacteria Bacterial-induced CaCO3 precipitation Surface protection Crack repair Self-healing 



As a postdoctoral fellow of the Research Foundation Flanders (FWO-Vlaanderen), Jianyun Wang gratefully acknowledges the financial support from the FWO. This work was also supported by the SHeMat project “Training Network for Self-Healing Materials: from Concepts to Market” within the scope of the Seventh Framework Programme [FP7/2007-2013] under grant agreement no 290308 by the European Commission’s Marie Curie programme.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Achal V, Mukerjee A, Reddy MS (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5. doi: 10.1016/j.conbuildmat.2013.06.061 CrossRefGoogle Scholar
  2. Achal V, Mukherjee A (2015) A review of microbial precipitation for sustainable construction. Constr Build Mater 93:1224–1235. doi: 10.1016/j.conbuildmat.2015.04.051 CrossRefGoogle Scholar
  3. Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36(3):433–438. doi: 10.1007/s10295-008-0514-7 CrossRefPubMedGoogle Scholar
  4. Achal V, Mukherjee A, Goyal S, Reddy MS (2012) Corrosion prevention of reinforced concrete with microbial calcite precipitation. ACI Mater J 109(2):157–163Google Scholar
  5. Achal V, Pan XL, Ozyurt N (2011) Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng 37(4):554–559. doi: 10.1016/j.ecoleng.2010.11.009 CrossRefGoogle Scholar
  6. Andalib R, Abd Majid MZ, Keyvanfar A, Talaiekhozan A, Hussin MW, Shafaghat A, Zin RM, Lee CT, Fulazzaky MA, Ismail HH (2014) Durability improvement assessment in different high strength bacterial structural concrete grades against different types of acids. Sadhana-Acad Proc Eng Sci 39(6):1509–1522Google Scholar
  7. Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28(4–5):404–409. doi: 10.1016/s0141-0229(00)00348-3 CrossRefPubMedGoogle Scholar
  8. Basaran Z (2013) Biomineralization in cement based materials: inoculation of vegetative cells. PhD thesis University of Texas, Austin, USGoogle Scholar
  9. Benini S, Gessa C, Ciurli S (1996) Bacillus pasteurii urease: a heteropolymeric enzyme with a binuclear nickel active site. Soil Biol Biochem 28(6):819–821. doi: 10.1016/0038-0717(96)00017-x CrossRefGoogle Scholar
  10. Boquet E, Boronat A, Ramoscor A (1973) Production of calcite (calcium-carbonate) crystals by soil bacteria is a general phenomenon. Nature 246(5434):527–529. doi: 10.1038/246527a0 CrossRefGoogle Scholar
  11. Bundur ZB, Kirisits MJ, Ferron RD (2015) Biomineralized cement-based materials: impact of inoculating vegetative bacterial cells on hydration and strength. Cem Concr Res 67:237–245. doi: 10.1016/j.cemconres.2014.10.002 CrossRefGoogle Scholar
  12. Castanier S, Le Metayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126(1–4):9–23. doi: 10.1016/s0037-0738(99)00028-7 Google Scholar
  13. Chahal N, Siddique R (2013) Permeation properties of concrete made with fly ash and silica fume: influence of ureolytic bacteria. Constr Build Mater 49:161–174. doi: 10.1016/j.conbuildmat.2013.08.023 CrossRefGoogle Scholar
  14. Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater 28(1):351–356. doi: 10.1016/j.conbuildmat.2011.07.042 CrossRefGoogle Scholar
  15. Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72. doi: 10.1016/j.ecoleng.2012.01.013 CrossRefGoogle Scholar
  16. Da Silva FB, De Belie N, Boon N, Verstraete W (2015) Production of non-axenic ureolytic spores for self-healing concrete applications. Constr Build Mater 93:1034–1041. doi: 10.1016/j.conbuildmat.2015.05.049 CrossRefGoogle Scholar
  17. De Belie N (2010) Microorganisms versus stony materials: a love-hate relationship. Mater Struct 43(9):1191–1202. doi: 10.1617/s11527-010-9654-0 CrossRefGoogle Scholar
  18. De Belie N, De Muynck W (2009) Crack repair in concrete using biodeposition, Proc 2nd Int Conf Concr Repair, Rehab, Retrofitting 291-292Google Scholar
  19. De Belie N, Monteny J, Beeldens A, Vincke E, Van Gemert D, Verstraete W (2004) Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem Concr Res 34(12):2223–2236. doi: 10.1016/j.cemconres.2004.02.015 CrossRefGoogle Scholar
  20. de la Rosa JPM, Warke PA, Smith BJ (2013) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog Phys Geogr 37(3):325–351. doi: 10.1177/0309133312467660 CrossRefGoogle Scholar
  21. De Muynck W, Cox K, De Belle N, Verstraete W (2008a) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22(5):875–885. doi: 10.1016/j.conbuildmat.2006.12.011 CrossRefGoogle Scholar
  22. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136. doi: 10.1016/j.ecoleng.2009.02.006 CrossRefGoogle Scholar
  23. De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008b) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res 38(7):1005–1014. doi: 10.1016/j.cemconres.2008.03.005 CrossRefGoogle Scholar
  24. De Muynck W, Leuridan S, Van Loo D, Verbeken K, Cnudde V, De Belie N, Verstraete W (2011) Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Environ Microbiol 77(19):6808–6820. doi: 10.1128/aem.00219-11 CrossRefPubMedPubMedCentralGoogle Scholar
  25. De Muynck W, Verbeken K, De Belie N, Verstraete W (2010b) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol Eng 36(2):99–111. doi: 10.1016/j.ecoleng.2009.03.025 CrossRefGoogle Scholar
  26. De Muynck W, Verbeken K, De Belie N, Verstraete W (2013) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol 97(3):1335–1347. doi: 10.1007/s00253-012-3997-0 CrossRefPubMedGoogle Scholar
  27. DeJong JT, Fritzges MB, Nusslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392. doi: 10.1061/(asce)1090-0241(2006)132:11(1381) CrossRefGoogle Scholar
  28. DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210. doi: 10.1016/j.ecoleng.2008.12.029 CrossRefGoogle Scholar
  29. Dhami NK, Reddy MS, Mukherjee A (2012) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35. doi: 10.1016/j.ecoleng.2011.11.011 CrossRefGoogle Scholar
  30. Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17(4):357–367. doi: 10.1007/s10532-005-9006-x CrossRefPubMedGoogle Scholar
  31. Ersan YC, Da Silva FB, Boon N, Verstraete W, De Belie N (2015d) Screening of bacteria and concrete compatible protection materials. Constr Build Mater 88:196–203. doi: 10.1016/j.conbuildmat.2015.04.027 CrossRefGoogle Scholar
  32. Ersan YC, de Belie N, Boon N (2015a) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108–118. doi: 10.1016/j.bej.2015.05.006 CrossRefGoogle Scholar
  33. Ersan YC, Gruyaert E, Louis G, Lors C, De Belie N, Boon N (2015b) Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front Microbiol:6. doi: 10.3389/fmicb.2015.01228
  34. Ersan YC, Verbruggen H, De Graeve I, Verstraete W, De Belie N, Boon N (2015c) Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cem Concr Res (Accepted with minor revisions)Google Scholar
  35. Farmani F, Bonakdarpour B, Ramezanianpour AA (2015) pH reduction through amendment of cement mortar with silica fume enhances its biological treatment using bacterial carbonate precipitation. Mater Struct 48(10):3205–3215. doi: 10.1617/s11527-014-0391-7 CrossRefGoogle Scholar
  36. Ferris FG, Phoenix V, Fujita Y, Smith RW (2004) Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 degrees C in artificial groundwater. Geochim Cosmochim Acta 68(8):1701–1710. doi: 10.1016/s0016-7037(00)00503-9 CrossRefGoogle Scholar
  37. Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. In: Dove PM, DeYoreo JJ, Weiner S (eds) Biominer Rev Miner Geochem, vol 54, pp 95–114Google Scholar
  38. Frankel RB, Bazylinski DA, Schuler D (1998) Biomineralization of magnetic iron minerals in bacteria. Supramol Sci 5(3–4):383–390. doi: 10.1016/s0968-5677(98)00036-4 CrossRefGoogle Scholar
  39. Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35(10):1980–1983. doi: 10.1016/j.cemconres.2005.03.005 CrossRefGoogle Scholar
  40. Ghosh S, Biswas M, Chattopadhyay BD, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cem Concr Compos 31(2):93–98. doi: 10.1016/j.cemconcomp.2009.01.001 CrossRefGoogle Scholar
  41. Grabiec AM, Klama J, Zawal D, Krupa D (2012) Modification of recycled concrete aggregate by calcium carbonate biodeposition. Constr Build Mater 34:145–150. doi: 10.1016/j.conbuildmat.2012.02.027 CrossRefGoogle Scholar
  42. Gutierrez-Padilla MGD, Bielefeldt A, Ovtchinnikov S, Hernandez M, Silverstein J (2010) Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes. Cem Concr Res 40(2):293–301. doi: 10.1016/j.cemconres.2009.10.002 CrossRefGoogle Scholar
  43. Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 69(8):4901–4909. doi: 10.1128/aem.69.8.4901-4909.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36(2):112–117. doi: 10.1016/j.ecoleng.2009.01.004 CrossRefGoogle Scholar
  45. Hudon E, Mirza S, Frigon D (2011) Biodeterioration of concrete sewer pipes: state of the art and research needs. J Pipeline Syst Eng Pract 2(2):42–52. doi: 10.1061/(asce)ps.1949-1204.0000072 CrossRefGoogle Scholar
  46. Jayakumar S, Saravanane R (2010) Biodeterioration of coastal concrete structures by marine green algae. Int J Civil Eng 8(4):352–361Google Scholar
  47. Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Pinar-Larrubia G, Rodriguez-Gallego M, Gonzalez-Munoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62(4):352–363. doi: 10.1016/j.ibiod.2008.03.002 CrossRefGoogle Scholar
  48. Jimenez-Lopez C, Rodriguez-Navarro C, Pinar G, Carrillo-Rosua FJ, Rodriguez-Gallego M, Gonzalez-Munoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68(10):1929–1936. doi: 10.1016/j.chemosphere.2007.02.044 CrossRefPubMedGoogle Scholar
  49. Jonkers HM, Schlangen E (2007) Self-healing of cracked concrete: a bacterial approach, vol 1–3,Google Scholar
  50. Jonkers HM, Schlangen E (2008a) Properties and micro-structural analysis of organic compound-enriched self-healing concrete, Int Conf Microstruct Related Durab Cem Compos p 243–252Google Scholar
  51. Jonkers HM, Schlangen E (2008b) In: Walraven, Stoelhorst (eds) Development of a bacteria-based self healing concrete in tailor made concrete structutres. Taylor and Francis Group, LondonGoogle Scholar
  52. Jonkers HM, Schlangen E (2009) A two component bacteria-based self-healing concrete, Concr Repair Rehab Retrofit II, 215–220.Google Scholar
  53. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36(2):230–235. doi: 10.1016/j.ecoleng.2008.12.036 CrossRefGoogle Scholar
  54. Kalagri A, Miltiadou-Fezans A, Vintzileou E (2010) Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures. Mater Struct 43(8):1135–1146. doi: 10.1617/s11527-009-9572-1 CrossRefGoogle Scholar
  55. Karatas I (2008) Microbiological improvement of the physical properties of soils. PhD thesis(Arizona State University, US)Google Scholar
  56. Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth-Sci Rev 43(3–4):91–121. doi: 10.1016/s0012-8252(97)00036-6 CrossRefGoogle Scholar
  57. Krishnapriya S, Babu DLV, Arulraj GP (2015) Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res 174:48–55. doi: 10.1016/j.micres.2015.03.009 CrossRefPubMedGoogle Scholar
  58. Kumar VR, Bhuvaneshwari B, Maheswaran S, Palani GS, Ravisankar K, Iyer NR (2011) An overview of techniques based on biomimetics for sustainable development of concrete. Current Sci 101(6):741–747Google Scholar
  59. Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126(1–4):25–34. doi: 10.1016/s0037-0738(99)00029-9 CrossRefGoogle Scholar
  60. Mansch R, Beck E (1998) Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegrad 9(1):47–64. doi: 10.1023/a:1008381525192 CrossRefGoogle Scholar
  61. Moropoulou A, Kouloumbi N, Haralampopoulos G, Konstanti A, Michailidis P (2003) Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Prog Organ Coat 48(2–4):259–270. doi: 10.1016/s0300-9440(03)00110-3 CrossRefGoogle Scholar
  62. Nosouhian F, Mostofinejad D, Hasheminejad H (2015) Influence of biodeposition treatment on concrete durability in a sulphate environment. Biosyst Eng 133:141–152. doi: 10.1016/j.biosystemseng.2015.03.008 CrossRefGoogle Scholar
  63. Okwadha GDO, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9):1143–1148. doi: 10.1016/j.chemosphere.2010.09.066 CrossRefPubMedGoogle Scholar
  64. Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY (2010) Calcite-forming bacteria for compressive strength improvement in mortar. J Microbiol Biotechnol 20(4):782–788. doi: 10.4014/jmb.0911.11015 PubMedGoogle Scholar
  65. Pei RT, Liu J, Wang SS (2015) Use of bacterial cell walls as a viscosity-modifying admixture of concrete. Cem Concr Compos 55:186–195. doi: 10.1016/j.cemconcomp.2014.08.007 CrossRefGoogle Scholar
  66. Pei RT, Liu J, Wang SS, Yang MJ (2013) Use of bacterial cell walls to improve the mechanical performance of concrete. Cem Concr Compos 39:122–130. doi: 10.1016/j.cemconcomp.2013.03.024 CrossRefGoogle Scholar
  67. Piervittori R, Favero-Longo SE, Gazzano C (2009) Lichens and biodeterioration of stonework: a review. Chimica Oggi-Chem Today 27(6):8–11Google Scholar
  68. Qian CX, Wang JY, Wang RX, Cheng L (2009) Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater Sci Eng C-Biomim Supramol Syst 29(4):1273–1280. doi: 10.1016/j.msec.2008.10.025 CrossRefGoogle Scholar
  69. Qiu JS, Tng DQS, Yang EH (2014) Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr Build Mater 57:144–150. doi: 10.1016/j.conbuildmat.2014.01.085 CrossRefGoogle Scholar
  70. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98(1):3–9Google Scholar
  71. Ramakrishnan V, Ramesh KP, Bang SS (2001) Bacterial concrete. In: Wilson AR, Asanuma H (eds) Smart materials. Proc Soc Photo-Optical Instrum Eng (Spie), vol 4234, pp 168–176Google Scholar
  72. Revertegat E, Richet C, Gegout P (1992) Effect of pH on the durability of cement pastes. Cem Concr Res 22(2–3):259–272. doi: 10.1016/0008-8846(92)90064-3 CrossRefGoogle Scholar
  73. Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193. doi: 10.1128/aem.69.4.2182-2193.2003
  74. Sarode DD, Mukherjee A (2009) Microbial precipitation for repairs of concrete structures. Concr Sol - Chapter 33 ISBN: 978–0-415-55082-6. CRC PressGoogle Scholar
  75. Scrivener K, De Belie N (2013) Bacteriogenic sulfuric acid attack of cementitious materials in sewage systems. In: Alexander M, Bertron A, De Belie N (eds) Performance of cement-based materials in aggressive aqueous environments. RILEM State-of-the-Art Reports, vol 10. Springer, Netherlands, pp. 305–318CrossRefGoogle Scholar
  76. Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol 76:S49–S60. doi: 10.1111/j.1365-2672.1994.tb04357.x CrossRefGoogle Scholar
  77. Siddique R, Chahal NK (2011) Effect of ureolytic bacteria on concrete properties. Constr Build Mater 25(10):3791–3801. doi: 10.1016/j.conbuildmat.2011.04.010 CrossRefGoogle Scholar
  78. Silva FB (2015) Up-scaling the production of bacteria for self-healing concrete application. PhD thesis Ghent University, Ghent, BelgiumGoogle Scholar
  79. Soleimani S, Isgor OB, Ormeci B (2013b) Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure. Cem Concr Res 53:229–238. doi: 10.1016/j.cemconres.2013.06.016 CrossRefGoogle Scholar
  80. Soleimani S, Ormeci B, Isgor OB (2013a) Growth and characterization of Escherichia coli DH5 alpha biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD). Appl Microbiol Biotechnol 97(3):1093–1102. doi: 10.1007/s00253-012-4379-3 CrossRefPubMedGoogle Scholar
  81. Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. John Wiley & Sons, Inc, New York, 1022pGoogle Scholar
  82. Van Lancker B (2013) Consolidation of natural stone using microorganisms and nanoparticles. Master Thesis Ghent Unversity, Ghent, BelgiumGoogle Scholar
  83. Van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175. doi: 10.1016/j.ecoleng.2009.03.026 CrossRefGoogle Scholar
  84. Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40(1):157–166. doi: 10.1016/j.cemconres.2009.08.025 CrossRefGoogle Scholar
  85. Verbaendert I, Boon N, De Vos P, Heylen K (2011) Denitrification is a common feature among members of the genus Bacillus. Syst Appl Microbiol 34(5):385–391. doi: 10.1016/j.syapm.2011.02.003 CrossRefPubMedGoogle Scholar
  86. Vintzileou E, Miltiadou-Fezans A (2008) Mechanical properties of three-leaf stone masonry grouted with ternary or hydraulic lime-based grouts. Eng Struct 30(8):2265–2276. doi: 10.1016/j.engstruct.2007.11.003 CrossRefGoogle Scholar
  87. Vivar I, Borrego S, Ellis G, Moreno DA, Garcia AM (2013) Fungal biodeterioration of color cinematographic films of the cultural heritage of Cuba. Int Biodeterior Biodegrad 84:372–380. doi: 10.1016/j.ibiod.2012.05.021 CrossRefGoogle Scholar
  88. Wang JY (2013) Self-healing concrete by means of immobilized carbonate precipitating bacteria. PhD thesis Ghent University, Ghent, BelgiumGoogle Scholar
  89. Wang JY, Van Tittelboom K, De Belie N, Verstraete W (2010) Potential of applying bacteria to heal cracks in concrete. In: Proc of the 2nd Int Conf Sustain Constr Mater Technol. Ancona, Italy, pp. 1807–1818Google Scholar
  90. Wang JY, Van Tittelboom K, De Belie N, Verstraete W (2012a) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26(1):532–540. doi: 10.1016/j.conbuildmat.2011.06.054
  91. Wang JY, De Belie N, Verstraete W (2012b) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39(4):567–577. doi: 10.1007/s10295-011-1037-1 CrossRefPubMedGoogle Scholar
  92. Wang JY, Soens H, Verstraete W, De Belie N (2014a) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152. doi: 10.1016/j.cemconres.2013.11.009
  93. Wang JY, Snoeck D, Van Vlierberghe S, Verstraete W, De Belie N (2014b) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater 68:110–119. doi: 10.1016/j.conbuildmat.2014.06.018
  94. Wang JY, Dewanckele J, Cnudde V, Van Vlierberghe S, Verstraete W, De Belie N (2014c) X-ray computed tomography proof of bacterial-based self-healing in concrete. Cem Concr Compos 53:289–304. doi: 10.1016/j.cemconcomp.2014.07.014 CrossRefGoogle Scholar
  95. Wang JY, Mignon A, Snoeck D, Wiktor V, Van Vliergerghe S, Boon N, De Belie N (2015) Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol 6 doi:10.3389/fmicb.2015.01088Google Scholar
  96. Whiffin VS (2004) Microbial CaCO3 precipitation for the production of biocement. School of Biological Sciences and Biotechnology, Murdoch University, PerthGoogle Scholar
  97. Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423. doi: 10.1080/01490450701436505 CrossRefGoogle Scholar
  98. Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33(7):763–770. doi: 10.1016/j.cemconcomp.2011.03.012 CrossRefGoogle Scholar
  99. Wiktor V, Jonkers HM (2012) Determination of the crack self-healing capacity of bacterial concrete, Concr Sol 331-334Google Scholar
  100. Zamarreno DV, Inkpen R, May E (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 75(18):5981–5990. doi: 10.1128/aem.02079-08 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zammit G, Sanchez-Moral S, Albertano P (2011) Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci Total Environ 409(14):2773–2782. doi: 10.1016/j.scitotenv.2011.03.008 CrossRefPubMedGoogle Scholar
  102. Zhu TT, Paulo C, Merroun ML, Dittrich M (2015) Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol Eng 82:459–468. doi: 10.1016/j.ecoleng.2015.05.017
  103. Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76(6):1245–1253. doi: 10.1007/s00253-007-1130-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jianyun Wang
    • 1
    • 2
  • Yusuf Cagatay Ersan
    • 1
    • 2
  • Nico Boon
    • 2
  • Nele De Belie
    • 1
    Email author
  1. 1.Magnel Laboratory for Concrete Research, Faculty of Engineering and ArchitectureGhent UniversityGhentBelgium
  2. 2.Laboratory of Microbial Ecology and Technology (LabMET)Ghent UniversityGhentBelgium

Personalised recommendations