Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 8, pp 3667–3679 | Cite as

Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance

  • Mounira Kebouchi
  • Wessam Galia
  • Magali Genay
  • Claire Soligot
  • Xavier Lecomte
  • Ahoefa Ablavi Awussi
  • Clarisse Perrin
  • Emeline Roux
  • Annie Dary-Mourot
  • Yves Le Roux
Applied microbial and cell physiology

Abstract

Streptococcus thermophilus (ST) is a lactic acid bacterium widely used in dairy industry and displays several properties which could be beneficial for host. The objective of this study was to investigate, in vitro, the implication of sortase A (SrtA) and sortase-dependent proteins (SDPs) in the adhesion of ST LMD-9 strain to intestinal epithelial cells (IECs) and resistance to bile salt mixture (BSM; taurocholoate, deoxycholate, and cholate). The effect of mutations in prtS (protease), mucBP (MUCin-Binding Protein), and srtA genes in ST LMD-9 in these mechanisms were examined. The HT29-MTX, HT29-CL.16E, and Caco-2 TC7 cell lines were used. HT29-MTX and HT29-CL.16E cells express different mucins found in the gastro intestinal tract; whereas, Caco-2 TC7 express cell surface proteins found in the small intestine. All mutants showed different adhesion profiles depending on cell lines. The mutation in genes srtA and mucBP leads to a significant decrease in LMD-9 adhesion capacity to Caco-2 TC7 cells. A mutation in mucBP gene has also shown a significant decrease in LMD-9 adhesion capacity to HT29-CL.16E cells. However, no difference was observed using HT29-MTX cells. Furthermore, ST LMD-9 and srtA mutant were resistant to BSM up to 3 mM. Contrariwise, no viable bacteria were detected for prtS and mucBP mutants at this concentration. Two conclusions could be drawn. First, SDPs could be involved in the LMD-9 adhesion depending on the cell lines indicating the importance of eukaryotic-cell surface components in adherence. Second, SDPs could contribute to resistance to bile salts probably by maintaining the cell membrane integrity.

Keyword

S. thermophilus Sortase-dependent proteins (SDPs) Adhesion Intestinal epithelial cells Bile salt stress 

Notes

Acknowledgments

We thank Zeeshan Hafeez for the critical reading of the manuscript. Mounira Kebouchi is the recipient of a Ph.D. fellowship from the “Ministère de l’Enseignement Supérieur et de la Recherche.”

Compliance with Ethical Standards

This article does not involve experiments on humans or animals.

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Augeron C, Laboisse CL (1984) Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res 44:3961–3969PubMedGoogle Scholar
  2. Bajor A, Gillberg PG, Abrahamsson H (2010) Bile acids: short and long term effects in the intestine. Scand J Gastroenterol 45:645–664CrossRefPubMedGoogle Scholar
  3. Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651CrossRefPubMedGoogle Scholar
  4. Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiol Read Engl 152:273–280CrossRefGoogle Scholar
  5. Boke H, Aslim B, Alp G (2010) The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria. Arch Biol Sci 62:323–e328CrossRefGoogle Scholar
  6. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Mausy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558CrossRefPubMedGoogle Scholar
  7. Bonifait L, de la Cruz Dominguez-Punaro M, Vaillancourt K, Bart C, Slater J, Frenette M, Gottschalk M, Grenier D (2010) The cell envelope subtilisin-like proteinase is a virulence determinant for Streptococcus suis. BMC Microbiol 10:42CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brigidi P, Swennen E, Vitali B, Rossi M, Matteuzzi D (2003) PCR detection of Bifidobacterium strains and Streptococcus thermophilus in feces of human subjects after oral bacteriotherapy and yogurt consumption. Int J Food Microbiol 81:203–209CrossRefPubMedGoogle Scholar
  9. Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:8344–8351CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bustos AY, Raya R, de Valdez GF, Taranto MP (2011) Efflux of bile acids in Lactobacillus reuteri is mediated by ATP. Biotechnol Lett 33:2265–2269CrossRefPubMedGoogle Scholar
  11. Call EK, Klaenhammer TR (2013) Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Front Microbiol 4:73PubMedPubMedCentralGoogle Scholar
  12. Call EK, Goh YJ, Selle K, Klaenhammer TR, O’Flaherty S (2015) Sortase-deficient lactobacilli: effect on immunomodulation and gut retention. Microbiol Read Engl 161:311–321Google Scholar
  13. Couvigny B, Thérial C, Gautier C, Renault P, Briandet R, Guédon E (2015) Streptococcus thermophilus biofilm formation: a remnant trait of ancestral commensal life? PLoS ONE 10(6):e0128099. doi: 10.1371/journal.pone.0128099 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dandoy D, Fremaux C, Henry de Frahan M, Horvath P, Boyaval P, Hols P, Fontaine L (2011) The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS. Microb Cell Factories 10:S21CrossRefGoogle Scholar
  15. Delorme C, Bartholini C, Bolotine A, Ehrlich SD, Renault P (2010) Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl Environ Microbiol 76:451–460CrossRefPubMedPubMedCentralGoogle Scholar
  16. Duary RK, Batish VK, Grover S (2012) Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions. Mol Biol Rep 39:2541–2552CrossRefPubMedGoogle Scholar
  17. Elli M, Callegari ML, Ferrari S, Bessi E, Cattivelli D, Soldi S, Morelli L, Goupil Feuillerat N, Antoine JM (2006) Survival of yogurt bacteria in the human gut. Appl Environ Microbiol 72:5113–5117CrossRefPubMedPubMedCentralGoogle Scholar
  18. FDA (2002) “GRN No.49 Bifidobacterium lactis strain Bb12 and Streptococcus thermophilus strain Th4 ” GRAS Notice inventory.Google Scholar
  19. FDA (2012) “GRN No.378 Cultured [dairy sources, sugars, wheat, malt, and fruit- and vegetable based sources] fermented by [Streptococcus thermophilus, Bacillus coagulans, Lactobacillus acidophilus, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactobacillus sakei, Lactobacillus bulgaricus and Proprionibacterium freudenreichii subsp. shermanii or mixtures of these strains] ” GRAS Notice Inventory.Google Scholar
  20. Fernandez-Espla MD, Garault P, Monnet V, Rul F (2000) Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization. Appl Environ Microbiol 66:4772–4778CrossRefPubMedPubMedCentralGoogle Scholar
  21. Floch MH, Binder HJ, Filburn B, Gershengoren W (1972) The effect of bile acids on intestinal microflora. Am J Clin Nutr 25:1418–1426PubMedGoogle Scholar
  22. Freitas M, Cayuela C (2000) Microbial modulation of host intestinal glycosylation patterns. Microb Ecol Health Dis 12. doi: 10.3402/mehd.v12i2.8066.
  23. Goh YJ, Goin C, O’Flaherty S, Altermann E, Hutkins R (2011) Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9. Microb Cell Fact 10(Suppl 1):S22. doi: 10.1186/1475-2859-10-S1-S22 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, N. YGoogle Scholar
  25. Habimana O, Le Goff C, Juillard V, Bellon-Fontaine MN, Buist G, Kulakauskas S, Briandet R (2007) Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol 7:36CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hafeez Z, Cakir-Kiefer C, Girardet JM, Jardin J, Perrin C, Dary A, Miclo L (2013) Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus. Appl Microbiol Biotechnol 97:9787–9799CrossRefPubMedGoogle Scholar
  27. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD, Guédon E, MonnetV RP, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463PubMedGoogle Scholar
  28. Hu Q, Liu P, Yu Z, Zhao G, Li J, Teng L, Zhou M, Bei W, Chen H, Jin M (2010) Identification of a cell wall-associated subtilisin-like serine protease involved in the pathogenesis of Streptococcus suis serotype 2. Microb Pathog 48:103–109CrossRefPubMedGoogle Scholar
  29. Iyer R, Tomar SK, Kapila S, Mani J, Singh R (2010) Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res Int 43:103–110CrossRefGoogle Scholar
  30. Jarry A, Merlin D, Velcich A, Hopfer U, Augenlicht LH, Laboisse CL (1994) Interferon-gamma modulates cAMP-induced mucin exocytosis without affecting mucin gene expression in a human colonic goblet cell line. Eur J Pharmacol 267:95–103CrossRefPubMedGoogle Scholar
  31. Jensen H, Roos S, Jonsson H, Rud I, Grimmer S, van Pijkeren JP, Britton RA, Axelsson L (2014) Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiol Read Engl 160:671–681CrossRefGoogle Scholar
  32. Juge N (2012) Microbial adhesins to gastrointestinal mucus. Trends Microbiol 2:30–39CrossRefGoogle Scholar
  33. Kolling GL, Wu M, Warren CA, Durmaz E, Klaenhammer TR, Guerrant RL (2012) Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production. Gut Microbes 3:523–529CrossRefPubMedPubMedCentralGoogle Scholar
  34. Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjärvi T, Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P (2011) Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics MCP 10:M110.002741CrossRefPubMedGoogle Scholar
  35. Lalioui L, Pellegrini E, Dramsi S, Baptista M, Bourgeois N, Doucet-Populaire F, Rusniok C, Zouine M, Glaser P, Kunst F, Poyart C, Trieu-Cuot T (2005) The SrtA Sortase of Streptococcus agalactiae is required for cell wall anchoring of proteins containing the LPXTG motif, for adhesion to epithelial cells, and for colonization of the mouse intestine. Infect Immun 73:3342–3350CrossRefPubMedPubMedCentralGoogle Scholar
  36. Laparra JM, Sanz Y (2009) Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 49:695–701CrossRefPubMedGoogle Scholar
  37. Lebeer S, Vanderleyden J, De Keersmaecker SCJ (2010) Adaptation factors of the probiotic Lactobacillus rhamnosus GG. Benef Microbes 1:335–342CrossRefPubMedGoogle Scholar
  38. Lecomte X, Gagnaire V, Briard-Bion V, Jardin J, Lortal S, Dary A, Genay M (2014) The naturally competent strain Streptococcus thermophilus LMD-9 as a new tool to anchor heterologous proteins on the cell surface. Microb Cell Factories 13:82CrossRefGoogle Scholar
  39. Lenaerts K, Bouwman FG, Lamers WH, Renes J, Mariman EC (2007) Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics 8:91CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lesuffleur T, Barbat A, Dussaulx E, Zweibaum A (1990) Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 50:6334–6343PubMedGoogle Scholar
  41. Liévin-Le Moal V, Servin AL (2013) Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 77:380–439CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lukić J, Strahinić I, Jovčić B, Filipić B, Topisirović L, Kojić M, Begović J (2012) Different roles for lactococcal aggregation factor and mucin binding protein in adhesion to gastrointestinal mucosa. Appl Environ Microbiol 78:7993–8000CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mackenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiol Read Engl 156:3368–3378CrossRefGoogle Scholar
  44. Maguin E, Prevost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178:931–935PubMedPubMedCentralGoogle Scholar
  45. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci 103:15611–15616CrossRefPubMedPubMedCentralGoogle Scholar
  46. Marraffini LA, Dedent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev MMBR 70:192–221CrossRefPubMedGoogle Scholar
  47. Mater DDG, Bretigny L, Firmesse O, Flores MJ, Mogenet A, Bresson JL, Corthier G (2005) Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiol Lett 250:185–187CrossRefPubMedGoogle Scholar
  48. Moghimipour E, Ameri A, Handali S (2015) Absorption-enhancing effects of bile salts. Mol Basel Switz 20:14451–14473Google Scholar
  49. Moschioni M, Pansegrau W, Barocchi MA (2010) Adhesion determinants of the Streptococcus species. Microbial Biotechnol 3:370–388CrossRefGoogle Scholar
  50. Mozzi F, Gerbino E, Font de Valdez G, Torino MI (2009) Functionality of exopolysaccharides produced by lactic acid bacteria in an in vitro gastric system. J Appl Microbiol 107:56–64CrossRefPubMedGoogle Scholar
  51. Muñoz-Provencio D, Rodríguez-Díaz J, Collado MC, Langella P, Bermúdez-Humarán LG, Monedero V (2012) Functional analysis of the Lactobacillus casei BL23 sortases. Appl Environ Microbiol 78:8684–8693CrossRefPubMedPubMedCentralGoogle Scholar
  52. Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39:13–126CrossRefPubMedGoogle Scholar
  53. Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F (2010) Probiotics promote gut health through stimulation of epithelial innate immunity. Proc Natl Acad Sci USA 107:454–459CrossRefPubMedPubMedCentralGoogle Scholar
  54. Palencia PF, de López P, Corbí AL, Peláez C, Requena T (2008) Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur Food Res Technol 227:1475–1484CrossRefGoogle Scholar
  55. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pinto M, Robine-Leon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A (1983) Enterocyte-like differentiation and polarizationof the human colon carcinoma cell line caco-2 in culture. Biol Cell 47:323–330Google Scholar
  57. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rabot S, Rafter J, Rijkers GT, Watzl B, Antoine JM (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: impact of probiotics on digestive system metabolism. J Nutr 140:677S–689SCrossRefPubMedGoogle Scholar
  59. Remus DM, Bongers RS, Meijerink M, Fusetti F, Poolman B, Vos P, de Wells JM, Kleerebezem M, Bron PA (2013) Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195:502–509CrossRefPubMedPubMedCentralGoogle Scholar
  60. Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rizkalla SW, Luo J, Kabir M, Chevalier A, Pacher N, Slama G (2000) Chronic consumption of fresh but not heated yogurt improves breath-hydrogen status and short-chain fatty acid profiles: a controlled study in healthy men with or without lactose maldigestion. Am J Clin Nutr 72:1474–1479PubMedGoogle Scholar
  62. Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiol Read Engl 148:433–442CrossRefGoogle Scholar
  63. Ruiz L, Margolles A, Sánchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396CrossRefPubMedPubMedCentralGoogle Scholar
  64. Savaiano DA (2014) Lactose digestion from yogurt: mechanism and relevance. Am J Clin Nutr 99:1251S–5SCrossRefPubMedGoogle Scholar
  65. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC (2013) The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm 2013:237921CrossRefPubMedPubMedCentralGoogle Scholar
  66. Taranto MP, Perez-Martinez G, Font de Valdez G (2006) Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol 157:720–725CrossRefPubMedGoogle Scholar
  67. Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813PubMedPubMedCentralGoogle Scholar
  68. Turpin W, Humblot C, Noordine ML, Thomas M, Guyot JP (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PloS One 7:e38034CrossRefPubMedPubMedCentralGoogle Scholar
  69. Uriot O, Galia W, Awussi A A, Perrin C, Denis S, Chalancon S, Lorson E, Poirson C, Junjua M, Le Roux Y, Alric M, Dary A, Blanquet-Diot S, Roussel Y (2015) Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiol http://dx.doi.org/  10.1016/j.fm. 2015.05.007.
  70. Van Klinken BJ, Oussoren E, Weenink JJ, Strous GJ, Büller HA, Dekker J, Einerhand AW (1996) The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj J 13:757–768CrossRefPubMedGoogle Scholar
  71. Van Pijkeren JP, Canchaya C, Ryan KA, Li Y, Claesson MJ, Sheil B, Steidler L, O’Mahony L, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:4143–4153CrossRefPubMedPubMedCentralGoogle Scholar
  72. Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois A, Khlebnikov A, Johan ET, Vlieg VH, Punit S, Glickman JN, Onderdonk A, Glimcher LH, Garett WS (2010) Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci USA 107:18132–18137CrossRefPubMedPubMedCentralGoogle Scholar
  73. Velcich A, Palumbo L, Jarry A, Laboisse C, Racevskis J, Augenlicht L (1995) Patterns of expression of lineage-specific markers during the in vitro-induced differentiation of HT29 colon carcinoma cells. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 6:749–757Google Scholar
  74. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904CrossRefGoogle Scholar
  75. Von Ossowski I, Satokari R, Reunanen J, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, de Vos WM, Palva A (2011) Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 77:4465–4472Google Scholar
  76. Wang C, Li M, Feng Y, Zheng F, Dong Y, Pan X, Cheng G, Dong R, Hu D, Feng X, Ge J, Liu D, Wang J, Cao M, Hu F, Tang J (2009) The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol 191:23–33CrossRefPubMedGoogle Scholar
  77. Weiss G, Jespersen L (2010) Transcriptional analysis of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model. J Mol Microbiol Biotechnol 18:206–214CrossRefPubMedGoogle Scholar
  78. Zhang Q, Yang B, Brashears MM, Yu Z, Zhao M, Liu N, Li Y (2014) Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. J Sci Food Agric 94:1366–1372CrossRefPubMedGoogle Scholar
  79. Ziar H, Gérard P, Riazi A (2014) Effect of prebiotic carbohydrates on growth, bile survival and cholesterol uptake abilities of dairy-related bacteria. J Sci Food Agric 94:1184–1190CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mounira Kebouchi
    • 1
    • 2
  • Wessam Galia
    • 1
    • 2
  • Magali Genay
    • 1
    • 2
  • Claire Soligot
    • 1
    • 2
  • Xavier Lecomte
    • 1
    • 2
  • Ahoefa Ablavi Awussi
    • 1
    • 2
  • Clarisse Perrin
    • 1
    • 2
  • Emeline Roux
    • 1
    • 2
  • Annie Dary-Mourot
    • 1
    • 2
  • Yves Le Roux
    • 1
    • 2
  1. 1.Université de Lorraine, Unité de Recherche « Animal et Fonctionnalités des Produits Animaux» (UR AFPA), Équipe « Protéolyse et Biofonctionnalités des Protéines et des Peptides » (PB2P)Vandœuvre-lès-NancyFrance
  2. 2.INRA, Unité de Recherche « Animal et Fonctionnalités des Produits Animaux » (UR AFPA), Unité Sous Contrat 340Vandœuvre-lès-NancyFrance

Personalised recommendations