Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 12, pp 5339–5352 | Cite as

Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge

  • Maria Westerholm
  • Sam Crauwels
  • Maarten Van Geel
  • Raf Dewil
  • Bart Lievens
  • Lise AppelsEmail author
Biotechnological products and process engineering

Abstract

Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23–26 % to 11–13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data.

Keywords

Biogas Wastewater sludge Microbial dynamics and diversity Methanogenesis Next generation sequencing qPCR 

Notes

Acknowledgments

The authors would like to thank the Research Council of KU Leuven (projects OT/13/063 and F+/14/037) and the Industrial Research Council of KU Leuven (KP/10/006) for the financial support. We especially thank Sofie Houtmeyers for providing the digester samples, Stefan Ruyters for helping with the preparation of the 454 pyrosequencing run and Ken Meerbergen for assisting in some of the qPCR analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2016_7321_MOESM1_ESM.pdf (835 kb)
Esm 1 (PDF 835 kb)

References

  1. Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715. doi: 10.1021/ie010096l CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethane and its potential. Method Enzymol 494:327–351. doi: 10.1016/B978-0-12-385112-3.00016-0 CrossRefGoogle Scholar
  4. APHA (2006) Standard methods for the examination of water and wastewater, eigtheenthth edn. American Public Health Association, Washington DCGoogle Scholar
  5. Appels L, Baeyens J, Degréve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust 34:755–781. doi: 10.1016/j.pecs.2008.06.002 CrossRefGoogle Scholar
  6. Appels L, Degréve J, Van der Bruggen B, Van Impe J, Dewil R (2010) Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour Technol 101:5743–5748. doi: 10.1016/j.biortech.2010.02.068 CrossRefPubMedGoogle Scholar
  7. Appels L, Lauwers J, Degréve J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011a) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energy Rev 15:4295–4301. doi: 10.1016/j.rser.2011.07.121
  8. Appels L, Van Assche A, Willems K, Degréve J, Van Impe J, Dewil R (2011b) Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour Technol 102:4124–4130. doi: 10.1016/j.biortech.2010.12.070
  9. Azman S, Khadem AF, van Lier JB, Zeeman G, Plugge CM (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Env Sci Tec 45:2523–2564. doi: 10.1080/10643389.2015.1053727 CrossRefGoogle Scholar
  10. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. doi: 10.1038/ismej.2010.171 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Braguglia CM, Gagliano MC, Gallipoli A, Rossetti S (2012) Enhanced anaerobic digestion performances: effect of sludge ultrasound pre-treatment and role of the microbial population. Envion Engineer Manag J 11:1803–1810. doi: 10.1016/j.biortech.2012.01.074 Google Scholar
  12. Brown SP, Veach AM, Rigdon-Huss AR, Grond K, Lickteig SK, Lothamer K, Oliver AK, Jumpponen A (2015) Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Fungal Ecol 13:221–225. doi: 10.1016/j.funeco.2014.08.006 CrossRefGoogle Scholar
  13. Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 32:1634–1650. doi: 10.1016/j.wasman.2012.04.016 CrossRefPubMedGoogle Scholar
  14. Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenés JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Material 183:1–15. doi: 10.1016/j.jhazmat.2010.06.129 CrossRefGoogle Scholar
  15. Chen C, Wu J, Liu W (2008) Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res 42:1963–1976. doi: 10.1016/j.watres.2007.11.037 CrossRefPubMedGoogle Scholar
  16. Chen JL, Ortiz R, Steele TWJ (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534. doi: 10.1016/j.biotechadv.2014.10.005 CrossRefPubMedGoogle Scholar
  17. Cheon J, Hidaka T, Mori S, Koshikawa H, Tsuno H (2008) Applicability of random cloning method to analyze microbial community in full-scale anaerobic digesters. J Biosci Bioeng 106:134–140. doi: 10.1263/jbb.106.134 CrossRefPubMedGoogle Scholar
  18. Coelho NMG, Droste RL, Kennedy KJ (2011) Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge. Water Res 45:2822–2834. doi: 10.1016/j.watres.2011.02.032 CrossRefPubMedGoogle Scholar
  19. Coelho NMG, Droste RL, Kennedy KJ (2014) Microwave effects on soluble substrate and thermophilic digestibility of activated sludge. Water Environ Res 86:210–222. doi: 10.2175/106143013X13736496909635 CrossRefPubMedGoogle Scholar
  20. De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jáuregui R, Pieper DH, Verstraete W, Boon N (2015a) Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biotechnol 99:189–199. doi: 10.1007/s00253-014-6046-3
  21. De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, Boon N (2015b) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 75:312–323. doi: 10.1016/j.watres.2015.02.025
  22. Dearman B, Marschner P, Bentham RH (2006) Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids. Appl Microbiol Biotechnol 69:589–596. doi: 10.1007/s00253-005-0076-9 CrossRefPubMedGoogle Scholar
  23. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Egli H (2008) Kjeldahl guide. Büchi Labortechnik AG, Flawil, SwitzerlandGoogle Scholar
  25. Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Hamoda M (2007) Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res 41:2457–2466. doi: 10.1016/j.watres.2007.03.008 CrossRefPubMedGoogle Scholar
  26. EurObserv’ER (2014) Biogas barometer 2014. In: Observ’ER, Institute JS, Netherlands Ercot, Analyses IfreEE, Renac (eds). p 1-11Google Scholar
  27. Gagliano MC, Braguglia CM, Gallipoli A, Gianico A, Rossetti S (2015a) Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environ Sci Pollut Res 22:7339–7348. doi: 10.1007/s11356-014-3061-y
  28. Gagliano MC, Braguglia CM, Gianico A, Mininni G, Nakamura K, Rossetti S (2015b) Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances. Water Res 68:498–509. doi: 10.1016/j.watres.2014.10.031
  29. Gold ND, Martin VJJ (2007) Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 189:6787–6795. doi: 10.1128/JB.00882-07 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Houtmeyers S, Degréve J, Willems K, Dewil R, Appels L (2014) Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. Bioresour Technol 171:44–49. doi: 10.1016/j.biortech.2014.08.029 CrossRefPubMedGoogle Scholar
  31. Jang HM, Cho HU, Park SK, Ha JH, Park JM (2014) Influence of thermophilic aerobic digestion as sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res 48:1–14. doi: 10.1016/j.watres.2013.06.041 CrossRefPubMedGoogle Scholar
  32. Jiang JG, Gong CX, Wang JM, Tian SC, Zhang YJ (2014) Effects of ultrasound pre-treatment on the amount of dissolved organic matter extracted from food waste. Bioresour Technol 155:266–271. doi: 10.1016/j.biortech.2013.12.064 CrossRefPubMedGoogle Scholar
  33. Kobayashi T, Li YY, Harada H, Yasui H, Noike T (2009) Upgrading of the anaerobic digestion of waste activated sludge by combining temperature-phased anaerobic digestion and intermediate ozonation. Water Sci Technol 59:185–193. doi: 10.2166/wst.2009.510 CrossRefPubMedGoogle Scholar
  34. Laurent J, Casellas M, Dagot C (2010) Heavy metals biosorption on disintegrated activated sludge: description of a new equilibrium model. Chem Eng J 164:63–69. doi: 10.1016/j.cej.2010.08.023 CrossRefGoogle Scholar
  35. Lee S, Kang H, Lee YH, Lee TJ, Han K, Choi Y, Park H (2012) Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. J Environ Monit 14:1893–1905. doi: 10.1039/c2em10958a CrossRefPubMedGoogle Scholar
  36. Levén L, Schnürer A (2010) Molecular characterisation of two anaerobic phenol-degrading enrichment cultures. Int Biodeterior Biodegrad 64:427–433. doi: 10.1016/j.ibiod.2010.04.009 CrossRefGoogle Scholar
  37. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Inter J Syst Bacteriol 49:545–556CrossRefGoogle Scholar
  38. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Molecul Biolog Rev 66:506–577. doi: 10.1128/MMBR.66.3.506-577.2002 CrossRefGoogle Scholar
  39. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10-12 doi: 10.14806/ej.17.1.200Google Scholar
  40. McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039PubMedPubMedCentralGoogle Scholar
  41. McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72. doi: 10.1196/annals.1419.005 CrossRefPubMedGoogle Scholar
  42. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. doi: 10.1016/j.biotechadv.2014.04.007 CrossRefPubMedGoogle Scholar
  43. More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag 144:1–25. doi: 10.1016/j.jenvman.2014.05.010 CrossRefGoogle Scholar
  44. Mudhoo A, Sharma SK (2011) Microwave irradiation technology in waste sludge and wastewater treatment research. Crit Rev Environ Sci Technol 41:999–1066. doi: 10.1080/10643380903392767 CrossRefGoogle Scholar
  45. Murray WD (1986) Cellulose hydrolysis by Bacteroides cellulosolvens. Biomass 10:47–57. doi: 10.1016/0144-4565(86)90035-1 CrossRefGoogle Scholar
  46. Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K (2009) Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59:1901–1907. doi: 10.1099/ijs.0.008268-0 CrossRefPubMedGoogle Scholar
  47. Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Community ecology package. vol R package version 2.3-0,Google Scholar
  48. Park SK, Jang HM, Ha JH, Park JM (2014) Sequential sludge digestion after diverse pre-treatment conditions: sludge removal, methane production and microbial community changes. Bioresour Technol 162:331–340. doi: 10.1016/j.biortech.2014.03.152 CrossRefPubMedGoogle Scholar
  49. Pervin HM, Dennis PG, Lim HJ, Tyson GW, Batstone DJ, Bond PL (2013) Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Res 47:7098–7108. doi: 10.1016/j.watres.2013.07.053 CrossRefPubMedGoogle Scholar
  50. Qiu YL, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y (2008) Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol 74:2051–2058. doi: 10.1128/AEM.02378-07 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257CrossRefPubMedGoogle Scholar
  52. Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJM, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167:581–589. doi: 10.1016/j.micres.2012.06.002 CrossRefPubMedGoogle Scholar
  53. Roy F, Samain E, Dubourguier HC, Albagnac G (1986) Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147CrossRefGoogle Scholar
  54. Schattauer A, Abdoun E, Weiland P, Plöchl M, Heiermann M (2011) Abundance of trace elements in demonstration biogas plants. Biosyst Engineer 108:57–65. doi: 10.1016/j.biosystemseng.2010.10.010 CrossRefGoogle Scholar
  55. Schloss PD, Westcott SL, Ryanbin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2012) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09 CrossRefGoogle Scholar
  56. Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann K, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pühler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77–90CrossRefPubMedGoogle Scholar
  57. Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59:1764–1770. doi: 10.1099/ijs.0.003483-0 CrossRefPubMedGoogle Scholar
  58. Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15:150–155. doi: 10.1016/j.tim.2007.02.002 CrossRefPubMedGoogle Scholar
  59. Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour Technol 121:432–440. doi: 10.1016/j.biortech.2012.06.074 CrossRefPubMedGoogle Scholar
  60. Sun R, Xing D, Jia J, Zhou A, Zhang L, Ren N (2014) Methane production and microbial community structure for alkaline pretreated waste activated sludge. Bioresour Technol 169:496–501. doi: 10.1016/j.biortech.2014.07.032 CrossRefPubMedGoogle Scholar
  61. Sundberg C, Al-Soud WA, Larsson M, Alm EJ, Yekta SS, Svensson BH, Sorensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626. doi: 10.1111/1574-6941.12148 CrossRefPubMedGoogle Scholar
  62. Tiehm A, Nickel K, Zellhorn M, Neis U (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res 35:2003–2009. doi: 10.1016/S0043-1354(00)00468-1 CrossRefPubMedGoogle Scholar
  63. Tyagi VK, Lo S, Appels L, Dewil R (2014) Ultrasonic treatment of waste sludge: a review on mechanisms and applications. Crit Rev Envrion Sci Technol 44:1220–1288. doi: 10.1080/10643389.2013.763587 CrossRefGoogle Scholar
  64. Vanwonterghem I, Jensen P, Dennis PG, Hugenholtz P, Rabaey K, Tyson GW (2014) Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. ISME J 8:2015–2028. doi: 10.1038/ismej.2014.50 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman W (2009) The Firmicutes Bergey’s manual of systematic bacteriology. vol 3. Springer, New York, pp 1-7Google Scholar
  66. Waud M, Busschaert P, Ruyters S, Jacquemyn H, Lievens B (2014) Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Mol Ecol Resour 14:679–699. doi: 10.1111/1755-0998.12229 CrossRefPubMedGoogle Scholar
  67. Wei N (2012) Effect of ultrasonic pretreatment for the anaerobic digestion of sewage sludge. Adv Mat Res 531:528–531. doi: 10.4028/http://www.scientific.net/AMR.531.528 CrossRefGoogle Scholar
  68. Weiss A, Jerome V, Freitag R, Mayer HK (2008) Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81:163–173CrossRefPubMedGoogle Scholar
  69. Westerholm M, Dolfing J, Sherry A, Gray ND, Head IM, Schnürer A (2011) Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes. Environ Microbiol Reports 3:500–505. doi: 10.1111/j.1758-2229.2011.00249.x CrossRefGoogle Scholar
  70. Westerholm M, Levén L, Schnürer A (2012) Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl Environ Microbiol 78(21):7619–7625. doi: 10.1128/AEM.01637-12 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Worm P, Koehorst JJ, Visser M, Sedano-Núnez VT, Schaap PJ, Plugge CM, Sousa DZ, Stams AJM (2014) A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic acid degrading communities. Biochimica et Biophysica Acta vol 1837:2004–2016CrossRefGoogle Scholar
  72. Yang Y, Yu K, Xia Y, Lau FTK, Tang DTW, Fung WC, Fang HHP, Zhang T (2014) Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl Microbiol Biotechnol 98:5709–5718. doi: 10.1007/s00253-014-5648-0 CrossRefPubMedGoogle Scholar
  73. Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911. doi: 10.1016/j.procbio.2013.04.012 CrossRefGoogle Scholar
  74. Yue Z, Chen R, Yang F, MacLellan J, Marsh T, Liu Y, Liao W (2013) Effects of dairy manure and corn stover co-digestion on anaerobic microbes and corresponding digestion performance. Bioresour Technol 128:65–71. doi: 10.1016/j.biortech.2012.10.115 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maria Westerholm
    • 1
  • Sam Crauwels
    • 2
  • Maarten Van Geel
    • 3
  • Raf Dewil
    • 1
  • Bart Lievens
    • 2
  • Lise Appels
    • 1
    Email author
  1. 1.Department of Chemical Engineering, Process and Environmental Technology LabKU LeuvenSint-Katelijne-WaverBelgium
  2. 2.Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)KU LeuvenSint-Katelijne-WaverBelgium
  3. 3.Department of Biology, Plant Conservation and Population BiologyKU LeuvenHeverleeBelgium

Personalised recommendations