At-line determination of spore inoculum quality in Penicillium chrysogenum bioprocesses

Abstract

Spore inoculum quality in filamentous bioprocesses is a critical parameter influencing pellet morphology and, consequently, process performance. It is essential to determine the concentration of viable spores before inoculation, to implement quality control and decrease batch-to-batch variability. The ability to assess the spore physiologic status with close-to-real time resolution would offer interesting perspectives enhanced process analytical technology (PAT) and quality by design (QbD) strategies. Up to now, the parameters contributing to spore inoculum quality are not clearly defined. The state-of-the-art method to investigate this variable is colony-forming unit (CFU) determination, which assesses the number of growing spores. This procedure is tedious, associated with significant inherent bias, and not applicable in real time.

Here, a novel method is presented, based on the combination of viability staining (propidium iodide and fluorescein diacetate) and large-particle flow cytometry. It is compatible with the complex medium background often observed in filamentous bioprocesses and allows for a classification of the spores into different subpopulations. Next to viable spores with intact growth potential, dormant or inactive as well as physiologically compromised cells are accurately determined. Hence, a more holistic few on spore inoculum quality and early-phase biomass composition is provided, offering enhanced information content.

In an industrially relevant model bioprocess, good correlation to CFU counts was found. Morphological parameters (e.g. spore swelling) that are not accessible via standard monitoring tools were followed over the initial process phase with close temporal resolution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Allen PJ (1965) Metabolic aspects of spore germination in fungi. Annu Rev Phytopathol 3:313–342

    CAS  Article  Google Scholar 

  2. Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    CAS  Article  PubMed  Google Scholar 

  3. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290. doi:10.1128/AEM.02750-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Binder U, Chu M, Read ND, Marx F (2010) The antifungal activity of the Penicillium chrysogenum protein PAF disrupts calcium homeostasis in Neurospora crassa. Eukaryot Cell 9:1374–1382. doi:10.1128/EC.00050-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Breeuwer P, Abee T (2000) Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55:193–200

    CAS  Article  PubMed  Google Scholar 

  6. Broger T, Odermatt RP, Huber P, Sonnleitner B (2011) Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 154:240–247. doi:10.1016/j.jbiotec.2011.05.003

    CAS  Article  PubMed  Google Scholar 

  7. Brul S, Nussbaum J, Dielbandhoesing SK (1997) Fluorescent probes for wall porosity and membrane integrity in filamentous fungi. J Microbiol Methods 28:169–178

    CAS  Article  Google Scholar 

  8. Budde BB, Rasch M (2001) A comparative study on the use of flow cytometry and colony forming units for assessment of the antibacterial effect of bacteriocins. Int J Food Microbiol 63:65–72

    CAS  Article  PubMed  Google Scholar 

  9. Bunthof CJ, van den Braak S, Breeuwer P, Rombouts FM, Abee T (1999) Rapid fluorescence assessment of the viability of stressed Lactococcus lactis. Appl Environ Microbiol 65:3681–3689

    CAS  PubMed  PubMed Central  Google Scholar 

  10. d’Enfert C (1997) Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21:163–172

    Article  Google Scholar 

  11. Davis C (2014) Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods 103:9–17. doi:10.1016/j.mimet.2014.04.012

    CAS  Article  PubMed  Google Scholar 

  12. Deere D, Shen J, Vesey G, Bell P, Bissinger P, Veal D (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14:147–160. doi:10.1002/(SICI)1097-0061(19980130)14:2<147::AID-YEA207>3.0.CO;2-L

    CAS  Article  PubMed  Google Scholar 

  13. Díaz M, Herrero M, García LA, Quirós C (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48:385–407

    Article  Google Scholar 

  14. Ehgartner D, Sagmeister P, Herwig C, Wechselberger P (2015) A novel real-time method to estimate volumetric mass biodensity based on the combination of dielectric spectroscopy and soft-sensors. J Chem Technol Biotechnol 90:262–272

    CAS  Article  Google Scholar 

  15. Fletcher J, Morton G (1970) Physiology of germination of Penicillium griseofulvum conidia. Trans Brit Mycol Soc 54:65–81

    CAS  Article  Google Scholar 

  16. Gottlieb D (1950) The physiology of spore germination in fungi. Bot Rev 16:229–257

    CAS  Article  Google Scholar 

  17. Hashemi N, Erickson JS, Golden JP, Jackson KM, Ligler FS (2011) Microflow cytometer for optical analysis of phytoplankton. Biosens Bioelectron 26:4263–4269. doi:10.1016/j.bios.2011.03.042

    CAS  Article  PubMed  Google Scholar 

  18. Hua SS, Brandl MT, Hernlem B, Eng JG, Sarreal SB (2011) Fluorescent viability stains to probe the metabolic status of aflatoxigenic fungus in dual culture of Aspergillus flavus and Pichia anomala. Mycopathologia 171:133–138. doi:10.1007/s11046-010-9352-z

    CAS  Article  PubMed  Google Scholar 

  19. Hyka P, Züllig T, Ruth C, Looser V, Meier C, Klein J, Melzoch K, Meyer HP, Glieder A, Kovar K (2010) Combined use of fluorescent dyes and flow cytometry to quantify the physiological state of Pichia pastoris during the production of heterologous proteins in high-cell-density fed-batch cultures. Appl Environ Microbiol 76:4486–4496. doi:10.1128/AEM.02475-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Hyka P, Lickova S, Pribyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16. doi:10.1016/j.biotechadv.2012.04.007

    CAS  Article  PubMed  Google Scholar 

  21. Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 33:77–79

    CAS  Article  PubMed  Google Scholar 

  22. Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73:169–187

    CAS  Article  PubMed  Google Scholar 

  23. Kumar N, Borth N (2012) Flow-cytometry and cell sorting: an efficient approach to investigate productivity and cell physiology in mammalian cell factories. Methods 56:366–374. doi:10.1016/j.ymeth.2012.03.004

    CAS  Article  PubMed  Google Scholar 

  24. Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W (2010) The bacterial ghost platform system: production and applications. Bioengineered bugs 1:326–336. doi:10.4161/bbug.1.5.12540

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lein J (1986) The Panlabs penicillin strain improvement program. In: Vanek Z, Hostalek Z (eds) Overproduction of microbial metabolites. Butterworths, Boston, pp 105–139

    Google Scholar 

  26. Liao RS, Rennie RP, Talbot JA (1999) Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob Agents Chemother 43:1034–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin JF, Nicolas G, Villanueva JR (1973) Chemical changes in the cell walls of conidia of Penicillium notatum during germination. Can J Microbiol 19:789–796

    CAS  Article  PubMed  Google Scholar 

  28. Mesquita N, Portugal A, Pinar G, Loureiro J, Coutinho AP, Trovao J, Nunes I, Botelho ML, Freitas H (2013) Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. Int Biodeter Biodegr 84:250–257

    CAS  Article  Google Scholar 

  29. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets—a literature review. Biotechnol Bioeng 19:781–799

    CAS  Article  Google Scholar 

  30. Meyerhoff J, Bellgardt K (1995) A morphology-based model for fed-batch cultivations of Penicillium chrysogenum growing in pellet form. J Biotechnol 38:201–217

    CAS  Article  Google Scholar 

  31. Nielsen J (1992) Modelling the growth of filamentous fungi. Adv Biochem Eng Biotechnol 46:187–223

    CAS  PubMed  Google Scholar 

  32. O’Brien MC, Bolton WE (1995) Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry. Cytometry 19:243–255. doi:10.1002/cyto.990190308

    Article  PubMed  Google Scholar 

  33. Paul GC, Kent CA, Thomas CR (1993) Viability testing and characterization of germination of fungal spores by automatic image analysis. Biotechnol Bioeng 42:11–23

    CAS  Article  PubMed  Google Scholar 

  34. Posch AE, Herwig C (2014) Physiological description of multivariate interdependencies between process parameters, morphology and physiology during fed-batch penicillin production. Biotechnol Prog 30:689–699. doi:10.1002/btpr.1901

    CAS  Article  PubMed  Google Scholar 

  35. Posch AE, Spadiut O, Herwig C (2012) Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum. Microb Cell Fact 11:88. doi:10.1186/1475-2859-11-88

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Prigione V, Filipello Marchisio V (2004) Methods to maximise the staining of fungal propagules with fluorescent dyes. J Microbiol Methods 59:371–379. doi:10.1016/j.mimet.2004.07.016

    CAS  Article  PubMed  Google Scholar 

  37. Quiros C, Herrero M, Garcia LA, Diaz M (2007) Application of flow cytometry to segregated kinetic modeling based on the physiological states of microorganisms. Appl Env Microbiol 73:3993–4000. doi:10.1128/AEM.00171-07

    CAS  Article  Google Scholar 

  38. Rieseberg M, Kasper C, Reardon KF, Scheper T (2001) Flow cytometry in biotechnology. Appl Microbiol Biotechnol 56:350–360

    CAS  Article  PubMed  Google Scholar 

  39. Rotman B, Papermaster BW (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A 55:134–141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Env Microbiol 43:1256–1261

    Google Scholar 

  41. Sundstrom H, Wallberg F, Ledung E, Norrman B, Hewitt CJ, Enfors SO (2004) Segregation to non-dividing cells in recombinant Escherichia coli fed-batch fermentation processes. Biotechnol Lett 26:1533–1539. doi:10.1023/B:BILE.0000044458.29147.75

    Article  PubMed  Google Scholar 

  42. Ueckert J, Breeuwer P, Abee T, Stephens P, von Caron GN, ter Steeg PF (1995) Flow cytometry applications in physiological study and detection of foodborne microorganisms. Int J Food Microbiol 28:317–326

    CAS  Article  PubMed  Google Scholar 

  43. Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243:191–210

    CAS  Article  PubMed  Google Scholar 

  44. Vermes I, Haanen C, Reutelingsperger C (2000) Flow cytometry of apoptotic cell death. J Immunol Methods 243:167–190

    CAS  Article  PubMed  Google Scholar 

  45. Walther TC, Brickner JH, Aguilar PS, Bernales S, Pantoja C, Walter P (2006) Eisosomes mark static sites of endocytosis. Nature 439:998–1003. doi:10.1038/nature04472

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Herwig.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

This study was funded by the Christian Doppler Gesellschaft (grant number 171).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 418 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ehgartner, D., Herwig, C. & Neutsch, L. At-line determination of spore inoculum quality in Penicillium chrysogenum bioprocesses. Appl Microbiol Biotechnol 100, 5363–5373 (2016). https://doi.org/10.1007/s00253-016-7319-9

Download citation

Keywords

  • Filamentous fungi
  • Flow cytometry
  • Viability staining
  • Spore quality
  • Bioprocess development