Skip to main content

Bioconcrete: next generation of self-healing concrete

Abstract

Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Achal V, Mukerjee A, Sudhakara Reddy M (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5

    Article  Google Scholar 

  2. Achal V, Mukherjee A, Sudhakara Reddy M (2011) Microbial concrete: way to enhance the durability of building structures. J Mater Civil Eng 23:730–734

    Article  CAS  Google Scholar 

  3. Achal V, Pan X (2011) Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr Microbiol 62:894–902

    Article  CAS  PubMed  Google Scholar 

  4. Ahn TH, Kishi T (2009) The effect of geo-materials on the autogenous healing behavior of cracked concrete. ICCRRR II. Cape Town, South Africa pp 125–126

  5. Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Tech 28:404–409

    Article  CAS  Google Scholar 

  6. Bang SS, Lippert JJ, Yerra U, Mulukutla S, Ramakrishnan V (2010) Microbial calcite, a bio-based smart nanomaterial in concrete remediation. Int J Smart Nano Mater 1:28–39

    Article  CAS  Google Scholar 

  7. Barton LL, Northup DE (2011) Microbial ecology. Wiley- Blackwell

  8. Belie ND, Muynck W (2008) Crack repair in concrete using biodeposition. ICCRRR II. Cape Town, South Africa 291–292

  9. Berenjian A, Chan N, Malmiri HJ (2012) Volatile organic compounds removal methods: a review. Am J Biochem Biotechnol 8:220–229

    Article  CAS  Google Scholar 

  10. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Ann Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  11. Burbank MB, Weaver TJ, Green TL, Williams B, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28:301–312

    Article  Google Scholar 

  12. Burne RA, Chen YYM (2000) Bacterial ureases in infectious diseases. Microbes Infect 2:533–542

    Article  CAS  PubMed  Google Scholar 

  13. Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20:85–98

    Article  CAS  Google Scholar 

  14. Cailleux E, Pollet V (2009) Investigations on the development of self-healing properties in protective coatings for concrete and repair mortars. 2nd International Conference on Self-Healing Materials, Chicago, USA

  15. Castainer S, Metayer-Levrel GL, Perthuisot J (2000) Bacterial roles in the precipitation of carbonate minerals. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg, pp. 32–39

    Chapter  Google Scholar 

  16. Castainer S, Metayer-Levrel GL, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sediment Geol 126:9–23

    Article  Google Scholar 

  17. Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater 28:351–356

    Article  Google Scholar 

  18. Chunxiang Q, Jianyun W, Ruixing W, Liang C (2009) Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater Sci Eng 29:1273–1280

    Article  Google Scholar 

  19. Clear CA (1985) Effects of autogenous healing upon the leakage of water through cracks in concrete. Cement and Concrete Association, USA

    Google Scholar 

  20. De Muynck W, Cox K, Belie ND, Verstraete W (2008b) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22:875–885

    Article  Google Scholar 

  21. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Article  Google Scholar 

  22. De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008a) Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concrete Res 38:1005–1014

    Article  Google Scholar 

  23. Dhami N, Mukherjee A, Reddy MS (2012) Biofilm and microbial applications in biomineralized concrete. In: Seto J (ed) Advanced Topics in Biomineralization, InTech, pp 137–164

  24. Dick J, De Windt W, De Graef B, Saveyn H, Van Der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367

    Article  CAS  PubMed  Google Scholar 

  25. Dry C (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater Struct 3:118–123

    Article  CAS  Google Scholar 

  26. Ebrahiminezhad A, Najafipour S, Kouhpayeh A, Berenjian A, Rasoul-Amini S, Ghasemi Y (2014) Facile fabrication of uniform hollow silica microspheres using a novel biological template. Colloid Surface B 118:249–253

    Article  CAS  Google Scholar 

  27. Edvardsen C (1999) Water permeability and autogenous healing of cracks in concrete. ACI Mater J 96:448–454

    CAS  Google Scholar 

  28. Ehrlich HL (1995) Geomicrobiology. Marcel Dekker Inc, New York

    Google Scholar 

  29. Erşan YÇ, Belie ND, Boon N (2015b) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108–118

    Article  Google Scholar 

  30. Erşan YÇ, Da Silva FB, Boon N, Verstraete W, De Belie N (2015a) Screening of bacteria and concrete compatible protection materials. Constr Build Mater 88:196–203

    Article  Google Scholar 

  31. Federal Highway Administration (FHWA) (2001) Corrosion cost and preventive strategies in the United States. NACE International http://www.nace.org/uploadedFiles/Publications/ccsupp.pdf

  32. Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. Rev Mineral 35:161–180

    CAS  Google Scholar 

  33. Ghaz-Jahanian MA, Khodaparastan F, Berenjian A, Jafarizadeh-Malmiri H (2013) Influence of small RNAs on biofilm formation process in bacteria. Mol Biotechnol 55:288–297

    Article  CAS  PubMed  Google Scholar 

  34. Groth I, Schumann P, Laiz L, Sanchez-Moral S, Cañveras JC, Saiz-Jimenez C (2001) Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol J 18:241–258

    Article  CAS  Google Scholar 

  35. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    Article  CAS  Google Scholar 

  36. Hearn N (1998) Self-sealing, autogenous healing and continued hydration: what is the difference? Mater Struct 31:563–567

    Article  CAS  Google Scholar 

  37. Jonkers HM (2011) Bacteria-based self-healing concrete. Heron 56:5–16

    Google Scholar 

  38. Jonkers HM, Schlangen E (2009) A two component bacteria-based self-healing concrete. Concrete Repair, Rehabilitation and Retrofitting II, ICCRRR Cape Town South Africa

  39. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235

    Article  Google Scholar 

  40. Kar SZ, Berenjian A (2013) Soil formation by ecological factors: critical review. Am J Agric Biol Sci 8:114–116

    Article  Google Scholar 

  41. Karatas I (2008) Microbiological improvement of the physical properties of soils. Dissertation Arizona State University

  42. Kim HK, Park SJ, Han JI, Lee HK (2013) Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Constr Build Mater 38:1073–1082

    Article  Google Scholar 

  43. Knorre H, Krumbein KE (2000) Bacterial calcification, in Microbial sediments, Riding RE, Awramik SM. Springer, Berlin, pp. 25–31

    Google Scholar 

  44. Le Métayer-Levrel G, Castanier S, Orial G, Loubière JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126:25–34

    Article  Google Scholar 

  45. Lee YN (2003) Calcite production by Bacillus amyloliquefaciens CMB01. J Microbiol 41:345–348

    CAS  Google Scholar 

  46. Li VC, Herbert E (2012) Robust self-healing concrete for sustainable infrastructure. J Adv Concr Technol 10:207–218

    Article  CAS  Google Scholar 

  47. Maheswaran S, Dasuru SS, Rama Chandra Murthy A, Bhuvaneshwari B, Ramesh Kumar V, Palani GS, Iyer NR, Krishnamoorthy S, Sandhya S (2014) Strength improvement studies using new type wild strain Bacillus cereus on cement mortar. Curr Sci India 106:50–57

    CAS  Google Scholar 

  48. Malmiri HJ, Jahanian MAG, Berenjian A (2012) Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am J Biochem Biotechnol 8:203–219

    Article  CAS  Google Scholar 

  49. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  50. Munn CB (2004) Marine microbiology: ecology and applications. Bios Scientific Publisher, London

    Google Scholar 

  51. Muynck W, Belie N, Verstraete W (2007) Improvement of concrete durability with the aid of bacteria. Proceedings of the first international conference on self healing materials. Noordwijk aan zee, The Netherlands

    Google Scholar 

  52. Neville AM, Brooks JJ (2010) Concrete technology. Pearson, United Kingdom

    Google Scholar 

  53. Okafor N (2011) Environmental microbiology of aquatic and waste systems. Springer, Netherlands

    Book  Google Scholar 

  54. Pacheco-Torgal F, Labrincha JA (2013) Biotech cementitious materials: some aspects of an innovative approach for concrete with enhanced durability. Constr Build Mater 40:1136–1141

    Article  Google Scholar 

  55. Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY (2010) Calcite-forming bacteria for compressive strength improvement in mortar. J Microbiol Biotechn 20:782–788

    CAS  Google Scholar 

  56. Perito B, Mastromei G (2011) Molecular basis of bacterial calcium carbonate precipitation, in molecular biomineralization. W.E.G, Müller, Editor

    Google Scholar 

  57. Qian C, Wang R, Cheng L, Wang J (2010a) Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chinese J Chem 28:847–857

    Article  CAS  Google Scholar 

  58. Qian SZ, Zhou J, Schlangen E (2010b) Influence of curing condition and precracking time on the self-healing behavior of engineered cementitious composites. Cement Concrete Composites 32:686–693

    Article  CAS  Google Scholar 

  59. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98:3–9

    CAS  Google Scholar 

  60. Ramm W, Biscoping M (1998) Autogenous healing and reinforcement corrosion of water-penetrated separation cracks in reinforced concrete. Nucl Eng Des 179:191–200

    Article  CAS  Google Scholar 

  61. Reinhardt HW, Jooss M (2003) Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cement Concrete Res 33:981–985

    Article  CAS  Google Scholar 

  62. Rivadeneyra MA, Delgado R, Del Moral A, Ferrer MR, Ramos-Cormenzana A (1994) Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol Ecol 13: 197–204

  63. Ronholm J, Schumann D, Sapers HM, Izawa M, Applin D, Berg B, Mann P, Vali H, Flemming RL, Cloutis EA, Whyte LG (2014) A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions. Geobiology 12:542–556

    Article  CAS  PubMed  Google Scholar 

  64. Rusznyák A, Akob DM, Nietzsche S, Eusterhues K, Totsche KU, Neu TR, Frosch T, Popp J, Keiner R, Geletneky J, Katzschmann L, Schulze E, Küsel K (2012) Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic herrenberg cave. Appl Environ Microb 78:1157–1167

    Article  Google Scholar 

  65. Şahmaran M, Keskin SB, Ozerkan G, Yaman IO (2008) Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cement Concrete. Composites 30:872–879

    Article  Google Scholar 

  66. Samani AK, Attard MM (2012) A stress-strain model for uniaxial and confined concrete under compression. Eng Struct 41:335–349

    Article  Google Scholar 

  67. Samani AK, Attard MM (2014) Lateral strain model for concrete under compression. ACI Struct J 111:441–451

    Google Scholar 

  68. Sangadji S, Schlangen E (2013) Mimicking bone healing process to self repair concrete structure novel approach using porous network concrete. Procedia Engineering 54:315–326

    Article  Google Scholar 

  69. Schlegel H (1993) General microbiology. University Press, Cambridge

    Google Scholar 

  70. Sierra-Beltran MG, Jonkers HM, Schlangen E (2014) Characterization of sustainable bio-based mortar for concrete repair. Constr Build Mater 67:344–352

    Article  Google Scholar 

  71. Silva FB, Boon N, De Belie N, Verstraete W (2015) Industrial application of biological self-healing concrete: challenges and economical feasibility. J Commerc Biotechnol 21:31–38

    Article  Google Scholar 

  72. Soltmann U, Böttcher H (2008) Utilization of sol-gel ceramics for the immobilization of living microorganisms. J Sol-Gel Sci Techn 48:66–72

    Article  CAS  Google Scholar 

  73. Soltmann U, Raff J, Selenska-Pobell S, Matys S, Pompe W, Böttcher H (2003) Biosorption of heavy metals by sol-gel immobilized Bacillus sphaericus cells, spores and S-layers. J Sol-Gel Sci Techn 26:1209–1212

    Article  CAS  Google Scholar 

  74. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    Article  CAS  Google Scholar 

  75. Stuckrath C, Serpell R, Valenzuela LM, Lopez M (2014) Quantification of chemical and biological calcium carbonate precipitation: performance of self-healing in reinforced mortar containing chemical admixtures. Cement Concrete Composites 50:10–15

    Article  CAS  Google Scholar 

  76. Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    Article  CAS  PubMed  Google Scholar 

  77. Vaghari H, Eskandari M, Sobhani V, Berenjian A, Song Y, Jafarizadeh-Malmiri H (2015) Process intensification for production and recovery of biological products. Am J Biochem Biotechnol 11:37–43

    Article  Google Scholar 

  78. Van Breugel K (2007) Is there a market for self-healing cement based materials? The first international conference on self-healing materials. Noordwijk aan zee, The Netherlands

    Google Scholar 

  79. van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36:168–175

    Article  Google Scholar 

  80. Van Tittelboom K, De Belie N (2013) Self-healing in cementitious materials-a review. Materials 6:2182–2217

    Article  Google Scholar 

  81. Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cement Concrete Res 40:157–166

    Article  Google Scholar 

  82. Van Tittelboom K, De Belie N, Van Loo D, Jacobs P (2011) Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cement Concrete Composites 33:497–505

    Article  Google Scholar 

  83. Wang J, Dewanckele J, Cnudde V, Van Vlierberghe S, Verstraete W, De Belie N (2014a) X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement Concrete Composites 53:289–304

    Article  CAS  Google Scholar 

  84. Wang J, Van Tittelboom K, De Belie N, Verstraete W (2012a) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26:532–540

    Article  Google Scholar 

  85. Wang JY, De Belie N, Verstraete W (2012b) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biot 39:567–577

    Article  CAS  Google Scholar 

  86. Wang JY, Snoeck D, Van Vlierberghe S, Verstraete W, De Belie N (2014b) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater 68:110–119

    Article  Google Scholar 

  87. Wang JY, Soens H, Verstraete W, De Belie N (2014c) Self-healing concrete by use of microencapsulated bacterial spores. Cement Concrete Res 56:139–152

    Article  CAS  Google Scholar 

  88. Wang JY, Van Tittelboom K, De Belie N, Verstraete W (2010) Potential of applying bacteria to heal cracks in concrete. 2nd International Conference on Sustainable Construction Materials and Technologies

  89. Wang X, Xing F, Zhang M, Han N, Qian Z (2013) Experimental study on cementitious composites embedded with organic microcapsules. Materials 6:4064–4081

    Article  CAS  Google Scholar 

  90. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeter Biodegr 46:343–368

    Article  CAS  Google Scholar 

  91. Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement Concrete Composites 33:763–770

    Article  CAS  Google Scholar 

  92. Wu M, Johannesson B, Geiker M (2012) A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr Build Mater 28:571–583

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was financially supported by The University of Waikato, New Zealand.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aydin Berenjian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics

The article is original and has not been formally published in any other peer-reviewed journal and does not infringe any existing copyright and any other third party rights.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seifan, M., Samani, A.K. & Berenjian, A. Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100, 2591–2602 (2016). https://doi.org/10.1007/s00253-016-7316-z

Download citation

Keywords

  • Self-healing
  • Concrete
  • Crack
  • Bacteria
  • Calcium carbonate
  • Biomineralization