Abstract
Understanding the regulation of a heterologously expressed gene cluster in a host organism is crucial for activation of silent gene clusters or overproduction of the corresponding natural product. In this study, Streptomyces coelicolor M512(nov-BG1) containing the novobiocin biosynthetic gene cluster from Streptomyces niveus NCIMB 11891 was chosen as a model. An improved DNA affinity capturing assay (DACA), combined with semi-quantitative mass spectrometry, was used to identify proteins binding to the promoter regions of the novobiocin gene cluster. Altogether, 2475 proteins were identified in DACA studies with the promoter regions of the pathway-specific regulators novE (PnovE) and novG (PnovG), of the biosynthetic genes novH-W (PnovH) and of the vegetative σ-factor hrdB (PhrdB) as a negative control. A restrictive classification for specific binding reduced this number to 17 proteins. Twelve of them were captured by PnovH, among them, NovG, two were captured by PnovE, and three by PnovG. Unexpectedly some well-known regulatory proteins, such as the global regulators NdgR, AdpA, SlbR, and WhiA were captured in similar intensities by all four tested promoter regions. Of the 17 promoter-specific proteins, three were studied in more detail by deletion mutagenesis and by overexpression. Two of them, BxlRSc and BxlR2Sc, could be identified as positive regulators of novobiocin production in S. coelicolor M512. Deletion of a third gene, sco0460, resulted in reduced novobiocin production, while overexpression had no effect. Furthermore, binding of BxlRSc to PnovH and to its own promoter region was confirmed via surface plasmon resonance spectroscopy.




References
Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. doi:10.1038/nature01511
Ajith VK, Prasad R (2009) A novel protein that binds to dnrN-dnrO intergenic region of Streptomyces peucetius purified by DNA affinity capture has dihydrolipoamide dehydrogenase activity. Protein Expr Purif 67(2):132–138. doi:10.1016/j.pep.2009.05.012
Alvarez-Alvarez R, Rodriguez-Garcia A, Santamarta I, Perez-Redondo R, Prieto-Dominguez A, Martinez-Burgo Y, Liras P (2014) Transcriptomic analysis of Streptomyces clavuligerus DeltaccaR::tsr: effects of the cephamycin C-clavulanic acid cluster regulator CcaR on global regulation. Microb Biotechnol 7(3):221–231. doi:10.1111/1751-7915.12109
Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37(8):759–772. doi:10.1007/s10295-010-0730-9
Borchert N, Dieterich C, Krug K, Schutz W, Jung S, Nordheim A, Sommer RJ, Macek B (2010) Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. Genome Res 20(6):837–846. doi:10.1101/gr.103119.109
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Budayeva HG, Cristea IM (2014) A mass spectrometry view of stable and transient protein interactions. Adv Exp Med Biol 806:263–282. doi:10.1007/978-3-319-06068-2_11
Chen L, Wang Y, Guo H, Xu M, Deng Z, Tao M (2012) High-throughput screening for Streptomyces antibiotic biosynthesis activators. Appl Environ Microbiol 78(12):4526–4528. doi:10.1128/AEM.00348-12
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. doi:10.1021/pr101065j
Dangel V, Eustaquio AS, Gust B, Heide L (2008) novE and novG act as positive regulators of novobiocin biosynthesis. Arch Microbiol 190(5):509–519. doi:10.1007/s00203-008-0396-0
Dangel V, Harle J, Goerke C, Wolz C, Gust B, Pernodet JL, Heide L (2009) Transcriptional regulation of the novobiocin biosynthetic gene cluster. Microbiology 155(Pt 12):4025–4035. doi:10.1099/mic.0.032649-0
Dangel V, Westrich L, Smith MC, Heide L, Gust B (2010) Use of an inducible promoter for antibiotic production in a heterologous host. Appl Microbiol Biotechnol 87(1):261–269. doi:10.1007/s00253-009-2435-4
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645. doi:10.1073/pnas.120163297
Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52(1):285–302. doi:10.1111/j.1365-2958.2003.03979.x
Eustaquio AS, Gust B, Galm U, Li SM, Chater KF, Heide L (2005a) Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol 71(5):2452–2459. doi:10.1128/AEM.71.5.2452-2459.2005
Eustaquio AS, Gust B, Li SM, Pelzer S, Wohlleben W, Chater KF, Heide L (2004) Production of 8′-halogenated and 8′-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol 11(11):1561–1572. doi:10.1016/j.chembiol.2004.09.009
Eustaquio AS, Li SM, Heide L (2005b) NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis. Microbiology 151(Pt 6):1949–1961. doi:10.1099/mic.0.27669-0
Eustaquio AS, Luft T, Wang ZX, Gust B, Chater KF, Li SM, Heide L (2003) Novobiocin biosynthesis: inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation. Arch Microbiol 180(1):25–32. doi:10.1007/s00203-003-0555-2
Floriano B, Bibb M (1996) afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21(2):385–396
Gabrielsen OS, Hornes E, Korsnes L, Ruet A, Oyen TB (1989) Magnetic DNA affinity purification of yeast transcription factor tau—a new purification principle for the ultrarapid isolation of near homogeneous factor. Nucleic Acids Res 17(15):6253–6267
Gomez-Escribano JP, Bibb MJ (2014) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41(2):425–431. doi:10.1007/s10295-013-1348-5
Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100(4):1541–1546. doi:10.1073/pnas.0337542100
Guyet A, Benaroudj N, Proux C, Gominet M, Coppee JY, Mazodier P (2014) Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism. BMC Microbiol 14:81. doi:10.1186/1471-2180-14-81
Hardter U (2007) Heterologe Expression der Glykosyltransferasen SagGT1 und SagGT2 des Saquamycin Z-Produzenten Micromonospora sp. Tü 6368. Diplomarbeit Albert-Ludwigs Universität Freiburg
He F, Liu W, Sun D, Luo S, Chen Z, Wen Y, Li J (2014) Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 98(1):399–409. doi:10.1007/s00253-013-5348-1
Hesketh A, Kock H, Mootien S, Bibb M (2009) The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 74(6):1427–1444. doi:10.1111/j.1365-2958.2009.06941.x
Hiard S, Maree R, Colson S, Hoskisson PA, Titgemeyer F, van Wezel GP, Joris B, Wehenkel L, Rigali S (2007) PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 357(4):861–864. doi:10.1016/j.bbrc.2007.03.180
Higo A, Hara H, Horinouchi S, Ohnishi Y (2012) Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res 19(3):259–273. doi:10.1093/dnares/dss010
Kaysser L, Lutsch L, Siebenberg S, Wemakor E, Kammerer B, Gust B (2009) Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J Biol Chem 284(22):14987–14996. doi:10.1074/jbc.M901258200
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, UK
Kim SH, Lee BR, Kim JN, Kim BG (2012) NdgR, a common transcriptional activator for methionine and leucine biosynthesis in Streptomyces coelicolor. J Bacteriol 194(24):6837–6846. doi:10.1128/JB.00695-12
Kominek LA (1972) Biosynthesis of novobiocin by Streptomyces niveus. Antimicrob Agents Chemother 1(2):123–134
Li W, Ying X, Guo Y, Yu Z, Zhou X, Deng Z, Kieser H, Chater KF, Tao M (2006) Identification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2). J Bacteriol 188(24):8368–8375. doi:10.1128/JB.00933-06
Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77(1):112–143. doi:10.1128/MMBR.00054-12
MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111(1):61–68
Martinez A, Kolvek SJ, Hopke J, Yip CL, Osburne MS (2005) Environmental DNA fragment conferring early and increased sporulation and antibiotic production in Streptomyces species. Appl Environ Microbiol 71(3):1638–1641. doi:10.1128/AEM.71.3.1638-1641.2005
Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34(1):102–111
Olano C, Garcia I, Gonzalez A, Rodriguez M, Rozas D, Rubio J, Sanchez-Hidalgo M, Brana AF, Mendez C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7(3):242–256. doi:10.1111/1751-7915.12116
Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4(12):2010–2021. doi:10.1074/mcp.T500030-MCP200
Pan Y, Liu G, Yang H, Tian Y, Tan H (2009) The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol 72(3):710–723. doi:10.1111/j.1365-2958.2009.06681.x
Park SS, Ko BJ, Kim BG (2005) Mass spectrometric screening of transcriptional regulators using DNA affinity capture assay. Anal Biochem 344(1):152–154. doi:10.1016/j.ab.2005.05.019
Park SS, Yang YH, Song E, Kim EJ, Kim WS, Sohng JK, Lee HC, Liou KK, Kim BG (2009) Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 36(8):1073–1083. doi:10.1007/s10295-009-0591-2
Rachid S, Gerth K, Kochems I, Muller R (2007) Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol Microbiol 63(6):1783–1796. doi:10.1111/j.1365-2958.2007.05627.x
Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21(1):77–96
Rey DA, Puhler A, Kalinowski J (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103(1):51–65
Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670–675. doi:10.1038/embor.2008.83
Saleh O, Flinspach K, Westrich L, Kulik A, Gust B, Fiedler HP, Heide L (2012) Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 8:501–513. doi:10.3762/bjoc.8.57
Sambrook J, Russel DW (2001) Molecular cloning. Cold Spring Harbor Laboratory Press, New York, A Laboratory Manual
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22(20):4404–4422. doi:10.1002/1522-2683(200112)22:20<4404::AID-ELPS4404>3.0.CO;2-2
Shu D, Chen L, Wang W, Yu Z, Ren C, Zhang W, Yang S, Lu Y, Jiang W (2009) afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol 81(6):1149–1160. doi:10.1007/s00253-008-1738-1
Siebenberg S, Bapat PM, Lantz AE, Gust B, Heide L (2010) Reducing the variability of antibiotic production in Streptomyces by cultivation in 24-square deepwell plates. J Biosci Bioeng 109(3):230–234. doi:10.1016/j.jbiosc.2009.08.479
Stevenson CE, Assaad A, Chandra G, Le TB, Greive SJ, Bibb MJ, Lawson DM (2013) Investigation of DNA sequence recognition by a Streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography. Nucleic Acids Res 41(14):7009–7022. doi:10.1093/nar/gkt523
Su C, Zhao X, Qiu R, Tang L (2015) Construction of the co-expression plasmids of fostriecin polyketide synthases and heterologous expression in Streptomyces. Pharm Biol 53(2):269–274. doi:10.3109/13880209.2014.914956
Swiatek-Polatynska MA, Bucca G, Laing E, Gubbens J, Titgemeyer F, Smith CP, Rigali S, van Wezel GP (2015) Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLoS One 10(4):e0122479. doi:10.1371/journal.pone.0122479
Swiatek MA, Gubbens J, Bucca G, Song E, Yang YH, Laing E, Kim BG, Smith CP, van Wezel GP (2013) The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor. J Bacteriol 195(6):1236–1248. doi:10.1128/JB.02191-12
Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56(2):465–479. doi:10.1111/j.1365-2958.2005.04543.x
Tsujibo H, Kosaka M, Ikenishi S, Sato T, Miyamoto K, Inamori Y (2004) Molecular characterization of a high-affinity xylobiose transporter of Streptomyces thermoviolaceus OPC-520 and its transcriptional regulation. J Bacteriol 186(4):1029–1037
Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S, McDowall KJ (2005) Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 58(1):131–150. doi:10.1111/j.1365-2958.2005.04817.x
van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333. doi:10.1039/c1np00003a
Wang R, Mast Y, Wang J, Zhang W, Zhao G, Wohlleben W, Lu Y, Jiang W (2013) Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87(1):30–48. doi:10.1111/mmi.12080
Yamazaki H, Tomono A, Ohnishi Y, Horinouchi S (2004) DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 53(2):555–572. doi:10.1111/j.1365-2958.2004.04153.x
Yang YH, Song E, Kim EJ, Lee K, Kim WS, Park SS, Hahn JS, Kim BG (2009) NdgR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 82(3):501–511. doi:10.1007/s00253-008-1802-x
Yu Z, Zhu H, Dang F, Zhang W, Qin Z, Yang S, Tan H, Lu Y, Jiang W (2012) Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol 85(3):535–556. doi:10.1111/j.1365-2958.2012.08126.x
Zhang Y, Huang H, Chen Q, Luo M, Sun A, Song Y, Ma J, Ju J (2013) Identification of the grincamycin gene cluster unveils divergent roles for GcnQ in different hosts, tailoring the L-rhodinose moiety. Org Lett 15(13):3254–3257. doi:10.1021/ol401253p
Acknowledgments
We are grateful to Lutz Heide for his valuable advice and support, to Boris Maček for his help and advice with the mass-spectrometric protein analysis, and to Ksenia Fedorova for her help with the Biacore SPR System. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 766).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Funding
This study was funded by the Deutsche Forschungsgemeinschaft (grant number SFB 766) and the German Centre for Infection Research (DZIF) (grant number TTU 9.802).
Conflict of interest
Paulina Bekiesch declares that she has no conflict of interest.
Mirita Franz-Wachtel declares that she has no conflict of interest.
Andreas Kulik declares that he has no conflict of interest.
Melanie Brocker declares that she has no conflict of interest.
Karl Forchhammer declares that he has no conflict of interest.
Bertolt Gust declares that he has no conflict of interest.
Alexander Kristian Apel declares that he has no conflict of interest.
Electronic supplementary materials
ESM 1
(PDF 877 kb)
Rights and permissions
About this article
Cite this article
Bekiesch, P., Franz-Wachtel, M., Kulik, A. et al. DNA affinity capturing identifies new regulators of the heterologously expressed novobiocin gene cluster in Streptomyces coelicolor M512. Appl Microbiol Biotechnol 100, 4495–4509 (2016). https://doi.org/10.1007/s00253-016-7306-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-016-7306-1