Skip to main content

Advertisement

Log in

Efficient construct of a large and functional scFv yeast display library derived from the ascites B cells of ovarian cancer patients by three-fragment transformation-associated recombination

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Over the past decade, yeast display technology has emerged as a powerful tool for the isolation of high-affinity immunoglobulin fragments with potential utility as clinical diagnostic and therapeutic reagents. Despite significant refinement of the various methodologies underpinning library construction and selections, certain aspects remain challenging and process limiting. We have sought to significantly improve the robustness of the single-chain Fv (scFv) library construction step by overcoming the technical inefficiencies frequently encountered during the PCR-mediated assembly of scFvs from the discrete heavy and light V-domain repertoires. Using a novel primer set designed to provide maximum amplification coverage of the known germ-line V-domain repertoire, we have exploited the potential of the in vivo homologous gap-repair apparatus of Saccharomyces cerevisiae to assemble intact scFvs directly from co-transformed PBMC-derived VH, VL, and linearized vector component fragments. We have successfully applied this three-fragment assembly strategy to construct a large (>109) scFv yeast display library from the ascites immune repertoire of ovarian cancer patients and validated the approach by applying FACS-based sorting to readily isolate scFvs that recognize various tumor marker antigens (TMAs). It is expected that this simplified construction method may find general utility, both for de novo scFv library construction and for subsequent combinatorial affinity maturation manipulations that require more than two fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed N, Stenvers KL (2013) Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol 3:256. doi:10.3389/fonc.2013.00256

    Article  PubMed  PubMed Central  Google Scholar 

  • Angelopoulou K, Rosen B, Stratis M, Yu H, Solomou M, Diamandis EP (1996) Circulating antibodies against p53 protein in patients with ovarian carcinoma. Correlation with clinicopathologic features and survival. Cancer 78: doi:10.2146–2152

  • Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23(4):155–159. doi:10.1093/protein/gzq002

    Article  CAS  PubMed  Google Scholar 

  • Blaise L, Wehnert A, Steukers MP, van den Beucken T, Hoogenboom HR, Hufton SE (2004) Construction and diversification of yeast cell surface displayed libraries by yeast mating: application to the affinity maturation of Fab antibody fragments. Gene 342(2):211–218. doi:10.1016/j.gene.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  • Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. doi:10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  • Boyd SD, Gaeta BA, Jackson KJ, Fire AZ, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, Simen BB, Hanczaruk B, Nguyen KD, Nadeau KC, Egholm M, Miklos DB, Zehnder JL, Collins AM (2010) Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol 184(12):6986–6992. doi:10.4049/jimmunol.1000445

  • Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, Simen BB, Hanczaruk B, Nguyen KD, Nadeau KC, Egholm M, Miklos DB, Zehnder JL, Fire AZ (2009) Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 1(12):12ra23

    PubMed  PubMed Central  Google Scholar 

  • Christian S, Winkler R, Helfrich I, Boos AM, Besemfelder E, Schadendorf D, Augustin HG (2008) Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol 172(2):486–494. doi:10.2353/ajpath.2008.070623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangaj D, Abbott KL, Mookerjee A, Zhao A, Kirby PS, Sandaltzopoulos R, Powell DJ Jr, Lamaziere A, Siegel DL, Wolf C, Scholler N (2011) Mannose receptor (MR) engagement by mesothelin GPI anchor polarizes tumor-associated macrophages and is blocked by anti-MR human recombinant antibody. PLoS One 6(12):e28386. doi:10.1371/journal.pone.0028386

  • de Boer M, Chang SY, Eichinger G, Wong HC (1994) Design and analysis of PCR primers for the amplification and cloning of human immunoglobulin Fab fragments. Hum Antibodies Hybridomas 5(1–2):57–64

    PubMed  Google Scholar 

  • Ehrenmann F, Duroux P, Giudicelli V, Lefranc M-P (2010) Standardized sequence and structure analysis of antibody using IMGT®. Antibody Eng 2:11–31

    Article  Google Scholar 

  • Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21(2):163–170. doi:10.1038/nbt785

    Article  CAS  PubMed  Google Scholar 

  • Field C, Schekman R (1980) Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae. J Cell Biol 86(1):123–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison 3rd CA (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105(51):20404–20409. doi:10.1073/pnas.0811011106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper JD, Zijlstra A, Aimes RT, Liang H, Claassen GF, Tarin D, Testa JE, Quigley JP (2003) Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen. Oncogene 22(12):1783–1794. doi:10.1038/sj.onc.1206220

    Article  CAS  PubMed  Google Scholar 

  • Iizasa T, Fujisawa T, Saitoh Y, Hiroshima K, Ohwada H (1998) Serum anti-p53 autoantibodies in primary resected non-small-cell lung carcinoma. Cancer Immunol Immunother 46(6):345–349

    Article  CAS  PubMed  Google Scholar 

  • Johnson G, Wu TT (2000) Kabat database and its applications: 30 years after the first variability plot. Nucleic Acids Res 28(1):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotlan B, Simsa P, Teillaud JL, Fridman WH, Toth J, McKnight M, Glassy MC (2005) Novel ganglioside antigen identified by B cells in human medullary breast carcinomas: the proof of principle concerning the tumor-infiltrating B lymphocytes. J Immunol 175(4):2278–2285

    Article  CAS  PubMed  Google Scholar 

  • Kuijpers NG, Solis-Escalante D, Bosman L, van den Broek M, Pronk JT, Daran JM, Daran-Lapujade P (2013) A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Factories 12:47. doi:10.1186/1475-2859-12-47

    Article  CAS  Google Scholar 

  • Lee HW, Lee SH, Park KJ, Kim JS, Kwon MH, Kim YS (2006) Construction and characterization of a pseudo-immune human antibody library using yeast surface display. Biochem Biophys Res Commun 346(3):896–903. doi:10.1016/j.bbrc.2006.05.202

    Article  CAS  PubMed  Google Scholar 

  • Lefranc MP (2004) IMGT, The International ImMunoGeneTics Information System, http://imgt.cines.fr. Methods Mol Biol 248:27–49

    CAS  PubMed  Google Scholar 

  • Li Y, Siegel DL, Scholler N, Kaplan DE (2012) Validation of glypican-3-specific scFv isolated from paired display/secretory yeast display library. BMC Biotechnol 12:23. doi:10.1186/1472-6750-12-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim TS, Mollova S, Rubelt F, Sievert V, Dubel S, Lehrach H, Konthur Z (2010) V-gene amplification revisited—an optimised procedure for amplification of rearranged human antibody genes of different isotypes. New Biotechnol 27(2):108–117. doi:10.1016/j.nbt.2010.01.001

    Article  CAS  Google Scholar 

  • Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58(2–3):201–216

    Article  CAS  PubMed  Google Scholar 

  • Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597

    Article  CAS  PubMed  Google Scholar 

  • Meilhoc E, Masson JM, Teissie J (1990) High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N Y) 8(3):223–227

    Article  CAS  Google Scholar 

  • Murphy KM, Travers P, Walport M (2007) Janeway’s Immunobiology (Immunobiology: The Immune System (Janeway)), 7th edn. Garland Science, New York

    Google Scholar 

  • Nagayama S, Fukukawa C, Katagiri T, Okamoto T, Aoyama T, Oyaizu N, Imamura M, Toguchida J, Nakamura Y (2005) Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas. Oncogene 24(41):6201–6212. doi:10.1038/sj.onc.1208780

    Article  CAS  PubMed  Google Scholar 

  • Nzula S, Going JJ, Stott DI (2003) Antigen-driven clonal proliferation, somatic hypermutation, and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer Res 63(12):3275–3280

    CAS  PubMed  Google Scholar 

  • Retter I, Althaus HH, Munch R, Muller W (2005) VBASE2, an integrative V gene database. Nucleic Acids Res 33(Database issue):D671–D674. doi:10.1093/nar/gki088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sblattero D, Bradbury A (1998) A definitive set of oligonucleotide primers for amplifying human V regions. Immunotechnology 3(4):271–278

    Article  CAS  PubMed  Google Scholar 

  • Scholler N, Garvik B, Quarles T, Jiang S, Urban N (2006) Method for generation of in vivo biotinylated recombinant antibodies by yeast mating. J Immunol Methods 317(1–2):132–143. doi:10.1016/j.jim.2006.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95(11):6157–6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suga M, Hatakeyama T (2001) High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast 18(11):1015–1021. doi:10.1002/yea.753

    Article  CAS  PubMed  Google Scholar 

  • Swers JS, Kellogg BA, Wittrup KD (2004) Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res 32(3):e36. doi:10.1093/nar/gnh030

    Article  PubMed  PubMed Central  Google Scholar 

  • Tureci O, Mack U, Luxemburger U, Heinen H, Krummenauer F, Sester M, Sester U, Sybrecht GW, Sahin U (2006) Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1. Cancer Lett 236(1):64–71. doi:10.1016/j.canlet.2005.05.008

    Article  PubMed  Google Scholar 

  • van den Beucken T, Pieters H, Steukers M, van der Vaart M, Ladner RC, Hoogenboom HR, Hufton SE (2003) Affinity maturation of fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546(2–3):288–294

    Article  PubMed  Google Scholar 

  • Walker LM, Bowley DR, Burton DR (2009) Efficient recovery of high-affinity antibodies from a single-chain fab yeast display library. J Mol Biol 389(2):365–375. doi:10.1016/j.jmb.2009.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jackson KJ, Gaeta B, Pomat W, Siba P, Sewell WA, Collins AM (2011) Genomic screening by 454 pyrosequencing identifies a new human IGHV gene and sixteen other new IGHV allelic variants. Immunogenetics 63(5):259–265. doi:10.1007/s00251-010-0510-8

    Article  PubMed  Google Scholar 

  • Watkins BA, Davis AE, Fiorentini S, Reitz MS Jr(1995) V-region and class specific RT-PCR amplification of human immunoglobulin heavy and light chain genes from B-cell lines. Scand J Immunol 42(4):442–448

  • Weaver-Feldhaus JM, Lou J, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564(1–2):24–34. doi:10.1016/S0014-5793(04)00309-6

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Richardson RT, Widgren EE, O’Rand MG (2001) Characterization of Sp17: a ubiquitous three domain protein that binds heparin. Biochem J 357:25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter SF, Sekido Y, Minna JD, McIntire D, Johnson BE, Gazdar AF, Carbone DP (1993) Antibodies against autologous tumor cell proteins in patients with small-cell lung cancer: association with improved survival. J Natl Cancer Inst 85(24):2012–2018

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Nunez-Cruz S, Li C, Coukos G, Siegel DL, Scholler N (2011) Rapid isolation of high-affinity human antibodies against the tumor vascular marker Endosialin/TEM1, using a paired yeast-display/secretory scFv library platform. J Immunol Methods 363(2):221–232. doi:10.1016/j.jim.2010.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Drummond DC, Zou H, Hayes ME, Adams GP, Kirpotin DB, Marks JD (2007) Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J Mol Biol 371(4):934–947. doi:10.1016/j.jmb.2007.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Honorable Tina Brozman Foundation (AZ), the Claneil Foundation (AZ), and the NCI FCCC-UPenn Cancer SPORE pilot grant (AZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhi Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Xiaopeng Yuan, Xiang Chen, and Mingjuan Yang contribute equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Chen, X., Yang, M. et al. Efficient construct of a large and functional scFv yeast display library derived from the ascites B cells of ovarian cancer patients by three-fragment transformation-associated recombination. Appl Microbiol Biotechnol 100, 4051–4061 (2016). https://doi.org/10.1007/s00253-016-7303-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7303-4

Keywords

Navigation