Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 15, pp 6631–6642 | Cite as

Multiple effects of trace elements on methanogenesis in a two-phase anaerobic membrane bioreactor treating starch wastewater

  • Dawei Yu
  • Chao Li
  • Lina Wang
  • Junya Zhang
  • Jing Liu
  • Yuansong Wei
Biotechnological products and process engineering

Abstract

For enhancing anaerobic membrane bioreactor (AnMBR) treating food processing wastewater due to speed-limited methanogenesis step, multiple effects of trace element (TE) supplementation on methanogenesis of a two-phase AnMBR were firstly investigated in batch tests. TE supplementation included individual element, combination and recovery of Fe, Ni, Co, Cu and Zn supplementation. Multiple effects of TE supplementation were highest stimulated by 22.4 ± 5.6 % (TE313) for chemical oxygen demand (COD) removal, 43.1 ± 12.5 % (TE303) for specific methanogenic activity (SMA) and 13.9 ± 3.7 % (TE405) for biomass growth, respectively, although only 7.5 ± 0.6 % (TE106) for methane production. Dosage of TEs played a critical role in methane production, COD removal and biomass growth of the AnMBR’s methanogenesis. Low dosages of TE supplementation improved the COD removal and slightly stimulated the COD bioconverting to methane and biomass, but their specific methanation activities were inhibited in the initial rapid methanogenesis stage. Several methanation functional species were increased in abundance like Methanosarcina and Methanoculleus.

Keywords

Methanogenesis Trace element Biochemical methanation potential High-throughput sequencing 

Notes

Acknowledgments

This work was funded by Major Science and Technology Program for Water Pollution Control and Treatment of China (2012ZX07203-002; 2015ZX07203-005) and China-EU Innovation Funding for Small and Medium Size Enterprise (SQ2013ZOA000002). The authors also would like to thank Mingxing Zhao for English proofreading.

Compliance with ethical standards

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

253_2016_7289_MOESM1_ESM.pdf (834 kb)
ESM 1 (PDF 833 kb)

References

  1. Ahring BK (2003) Biomethanation I, vol 81. Springer, BerlinGoogle Scholar
  2. Buntner D, Spanjers H, van Lier JB (2014) The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor. Water Res 51:284–292. doi: 10.1016/j.watres.2013.10.065 CrossRefPubMedGoogle Scholar
  3. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Suppl 1):4516–4522. doi: 10.1073/pnas.1000080107 CrossRefPubMedGoogle Scholar
  4. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. doi: 10.1016/j.biortech.2007.01.057 CrossRefPubMedGoogle Scholar
  5. Fang HHP, Chui HK (1993) Microstructural analysis of anaerobic granules. Biotechnol Tech 7(7):407–410. doi: 10.1007/Bf00151874 CrossRefGoogle Scholar
  6. Fang C, Boe K, Angelidaki I (2011) Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresour Technol 102(10):5734–5741. doi: 10.1016/j.biortech.2011.03.013 CrossRefPubMedGoogle Scholar
  7. Feng XM, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste—linking process to microbial communities. FEMS Microbiol Ecol 74(1):226–240. doi: 10.1111/j.1574-6941.2010.00932.x CrossRefPubMedGoogle Scholar
  8. Florencio L, Jeniček P, Field JA, Lettinga G (1993) Effect of cobalt on the anaerobic degradation of methanol. J Ferment Bioeng 75(5):368–374. doi: 10.1016/0922-338X(93)90136-V CrossRefGoogle Scholar
  9. Han S-S, Bae T-H, Jang G-G, Tak T-M (2005) Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochem 40(7):2393–2400. doi: 10.1016/j.procbio.2004.09.017 CrossRefGoogle Scholar
  10. Ho J, Sung S (2010) Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresour Technol 101(7):2191–2196. doi: 10.1016/j.biortech.2009.11.042 CrossRefPubMedGoogle Scholar
  11. Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114(4):446–452. doi: 10.1016/j.jbiosc.2012.05.010 CrossRefPubMedGoogle Scholar
  12. Lindorfer H, Ramhold D, Frauz B (2012) Nutrient and trace element supply in anaerobic digestion plants and effect of trace element application. Water Sci Technol 66(9):1923–1929. doi: 10.2166/wst.2012.399 CrossRefPubMedGoogle Scholar
  13. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. doi: 10.1093/bioinformatics/btr507 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mao CL, Feng YZ, Wang XJ, Ren GX (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev 45:540–555. doi: 10.1016/j.rser.2015.02.032 CrossRefGoogle Scholar
  15. Ministry of Environmental Protection (2015) Environment statistical yearbook (2013). In: yearbook Es (ed). Ministry of Environmental Protection, BeijingGoogle Scholar
  16. Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8(5):221–225CrossRefPubMedGoogle Scholar
  17. Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99(17):7995–8001. doi: 10.1016/j.biortech.2008.03.049 CrossRefPubMedGoogle Scholar
  18. Osuna MB, Zandvoort MH, Iza JM, Lettinga G, Lens PNL (2003) Effects of trace element addition on volatile fatty acid conversions in anaerobic granular sludge reactors. Environ Technol 24(5):573–587CrossRefPubMedGoogle Scholar
  19. Padmasiri SI, Zhang J, Fitch M, Norddahl B, Morgenroth E, Raskin L (2007) Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res 41(1):134–144. doi: 10.1016/j.watres.2006.09.021 CrossRefPubMedGoogle Scholar
  20. Qiang H, Lang D-L, Li Y-Y (2012) High-solid mesophilic methane fermentation of food waste with an emphasis on iron, cobalt, and nickel requirements. Bioresour Technol 103(1):21–27. doi: 10.1016/j.biortech.2011.09.036 CrossRefPubMedGoogle Scholar
  21. Qiao W, Takayanagi K, Shofie M, Niu Q, Yu HQ, Li Y-Y (2013) Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: system amendments and membrane performance. Bioresour Technol 150:249–258. doi: 10.1016/j.biortech.2013.10.002 CrossRefPubMedGoogle Scholar
  22. Sambusiti C, Rollini M, Ficara E, Musatti A, Manzoni M, Malpei F (2014) Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage. Bioresour Technol 155:122–128. doi: 10.1016/j.biortech.2013.12.055 CrossRefPubMedGoogle Scholar
  23. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465(7298):606–U97. doi: 10.1038/nature09015 CrossRefPubMedGoogle Scholar
  24. Smith AL, Stadler LB, Cao L, Love NG, Raskin L, Skerlos SJ (2014) Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ Sci Technol 48(10):5972–5981. doi: 10.1021/es5006169 CrossRefPubMedGoogle Scholar
  25. Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, NashvilleGoogle Scholar
  26. State Council of China (2015) The action plan for water pollution prevention and control.Google Scholar
  27. Strömberg S, Nistor M, Liu J (2015) Early prediction of biochemical methane potential through statistical and kinetic modelling of initial gas production. Bioresour Technol 176:233–241. doi: 10.1016/j.biortech.2014.11.033 CrossRefPubMedGoogle Scholar
  28. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64. doi: 10.1016/j.copbio.2013.11.004 CrossRefPubMedGoogle Scholar
  29. Vintiloiu A, Boxriker M, Lemmer A, Oechsner H, Jungbluth T, Mathies E, Ramhold D (2013) Effect of ethylenediaminetetraacetic acid (EDTA) on the bioavailability of trace elements during anaerobic digestion. Chem Eng J 223:436–441. doi: 10.1016/j.cej.2013.02.104 CrossRefGoogle Scholar
  30. Wall DM, Allen E, Straccialini B, O’Kiely P, Murphy JD (2014) The effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Bioresour Technol 172:349–355. doi: 10.1016/j.biortech.2014.09.066 CrossRefPubMedGoogle Scholar
  31. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi: 10.1128/Aem.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wei Q, Zhang W, Guo J, Wu S, Tan T, Wang F, Dong R (2014a) Performance and kinetic evaluation of a semi-continuously fed anaerobic digester treating food waste: effect of trace elements on the digester recovery and stability. Chemosphere 117:477–485. doi: 10.1016/j.chemosphere.2014.08.060 CrossRefPubMedGoogle Scholar
  33. Wei YS, Yu DW, Chao L (2014b) Anaerobic membrane bioreactors for treating agricultural and food processing wastewater at high strength. Environ Sci 35(4):1613–1622. doi: 10.13227/j.hjkx.2014.04.058 Google Scholar
  34. Yanagi C, Sato M, Takahara Y (1994) Treatment of wheat starch waste water by a membrane combined two phase methane fermentation system. Desalination 98(1):161–170CrossRefGoogle Scholar
  35. Yu D, Liu J, Sui Q, Wei Y (2016) Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater. Bioresour Technol 203:62–70. doi: 10.1016/j.biortech.2015.12.010 CrossRefPubMedGoogle Scholar
  36. Zandvoort MH, van Hullebusch ED, Gieteling J, Lens PNL (2006) Granular sludge in full-scale anaerobic bioreactors: trace element content and deficiencies. Enzym Microb Technol 39(2):337–346. doi: 10.1016/j.enzmictec.2006.03.034 CrossRefGoogle Scholar
  37. Zhang L, Jahng D (2012) Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Manag 32(8):1509–1515. doi: 10.1016/j.wasman.2012.03.015 CrossRefPubMedGoogle Scholar
  38. Zhang W, Lang Q, Wu S, Li W, Bah H, Dong R (2014) Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China. Bioresour Technol 156:63–69. doi: 10.1016/j.biortech.2014.01.013 CrossRefPubMedGoogle Scholar
  39. Zhang J, Cai X, Qi L, Shao C, Lin Y, Zhang J, Zhang Y, Shen P, Wei Y (2015) Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying. Appl Microbiol Biotechnol 99:7321–7331. doi: 10.1007/s00253-015-6640-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.Department of BiotechnologyLund UniversityLundSweden
  3. 3.School of EnvironmentBeijing Normal UniversityBeijingChina
  4. 4.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations