Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 5, pp 2073–2082 | Cite as

An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas

  • Xi Zhu
  • Junfeng Rong
  • Hui Chen
  • Chenliu He
  • Wensheng Hu
  • Qiang Wang
Mini-Review

Abstract

The excessive emission of flue gas contributes to air pollution, abnormal climate change, global warming, and sea level rises associated with glacial melting. With the ability to utilize NOx as a nitrogen source and to convert solar energy into chemical energy via CO2 fixation, microalgae can potentially reduce air pollution and relax global warming, while also enhancing biomass and biofuel production as well as the production of high-value-added products. This informatics-based review analyzes the trends in the related literature and in patent activity to draw conclusions and to offer a prospective view on the developments of microalgae for industrial flue gas biosequestration. It is revealed that in recent years, microalgal research for industrial flue gas biosequestration has started to attract increasing attention and has now developed into a hot research topic, although it is still at a relatively early stage, and needs more financial and policy support in order to better understand microalgae and to develop an economically viable process. In comparison with onsite microalgal CO2 capture, microalgae-based biological DeNOx appears to be a more realistic and attractive alternative that could be applied to NOx treatment.

Keywords

Microalgae Industrial flue gas Biological sequestration Informatics CO2 NOx 

Notes

Acknowledgments

This work was supported jointly by the National Program on Key Basic Research Project (2012CB224803), the National Natural Science Foundation of China (31300030, 31270094), the Natural Science Foundation of Hubei Province of China (2013CFA109), Sinopec (S213049), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Y35E05).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Acien Fernandez FG, Gonzalez-Lopez CV, Fernandez Sevilla JM, Molina Grima E (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586. doi: 10.1007/s00253-012-4362-z CrossRefPubMedGoogle Scholar
  2. Arata S, Strazza C, Lodi A, Del Borghi A (2013) Spirulina platensis culture with flue gas feeding as a cyanobacteria-based carbon sequestration option. Chem Eng Technol 36:91–97. doi: 10.1002/ceat.201100722 CrossRefGoogle Scholar
  3. Basu S, Roy AS, Mohanty K, Ghoshal AK (2013) Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol 143:369–377. doi: 10.1016/j.biortech.2013.06.010 CrossRefPubMedGoogle Scholar
  4. Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations—response surface methodology analysis. Energ Convers Manage 50:262–267. doi: 10.1016/j.enconman.2008.09.024 CrossRefGoogle Scholar
  5. Cai W, Zhong Q, Zhang SL, Zhang JX (2013) Effects of Cr on the NO oxidation over the ceria-zirconia solid solution. Rsc Adv 3:7009–7015. doi: 10.1039/c3ra40226f CrossRefGoogle Scholar
  6. Cai W, Zhong Q, Zhao W, Bu YF (2014) Focus on the modified CexZr1-xO2 with the rigid benzene-muti-carboxylate ligands and its catalysis in oxidation of NO. Appl Catal B-Environ 158:258–268. doi: 10.1016/j.apcatb.2014.04.022 CrossRefGoogle Scholar
  7. Cheah WY, Show PL, Chang JS, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201. doi: 10.1016/j.biortech.2014.11.026 CrossRefPubMedGoogle Scholar
  8. Chen H, Qiu T, Rong JF, He CL, Wang Q (2015) Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects. Appl Energy 155:585–598. doi: 10.1016/j.apenergy.2015.06.055 CrossRefGoogle Scholar
  9. Chen H, Zhang Y, He C, Wang Q (2014) Ca2+ signal transduction related to neutral lipid synthesis in an oil-producing green alga Chlorella sp. C2. Plant Cell Physiol 55:634–644. doi: 10.1093/pcp/pcu015 CrossRefPubMedGoogle Scholar
  10. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi: 10.1016/j.biotechadv.2007.02.001 CrossRefPubMedGoogle Scholar
  11. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214. doi: 10.1016/j.jbiotec.2013.07.020 CrossRefPubMedGoogle Scholar
  12. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838. doi: 10.1016/j.biortech.2008.06.061 CrossRefPubMedGoogle Scholar
  13. Cline WR (2010) Economic analysis and climate change policy. Clim Chang 101:387–394. doi: 10.1007/s10584-009-9766-0 CrossRefGoogle Scholar
  14. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151. doi: 10.1016/j.cep.2009.03.006 CrossRefGoogle Scholar
  15. Diao YF, Zheng XY, He BS, Chen CH, Xu XC (2004) Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energ Convers Manage 45:2283–2296. doi: 10.1016/j.enconman.2003.10.011 CrossRefGoogle Scholar
  16. Farrelly DJ, Everard CD, Fagan CC, McDonnell KP (2013) Carbon sequestration and the role of biological carbon mitigation: a review. Renew Sust Energ Rev 21:712–727. doi: 10.1016/j.rser.2012.12.038 CrossRefGoogle Scholar
  17. Gao D, Qiu L, Hou Z, Zhang Q, Wu J, Gao Q, Song L (2013) Computational identification of microRNAs from the expressed sequence tags of toxic dinoflagellate Alexandrium tamarense. Evol Bioinform Online 9:479–485. doi: 10.4137/EBO.S12899 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Herzog HJ (2001) Peer reviewed: what future for carbon capture and sequestration? Environ Sci Technol 35:148A–153A. doi: 10.1021/es012307j CrossRefPubMedGoogle Scholar
  19. Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29:189–198. doi: 10.1016/j.biotechadv.2010.11.001 CrossRefPubMedGoogle Scholar
  20. Israelsson PH, Chow AC, Adams EE (2010) An updated assessment of the acute impacts of ocean carbon sequestration by direct injection. Int J Greenh Gas Con 4:262–271. doi: 10.1016/j.ijggc.2009.10.003 CrossRefGoogle Scholar
  21. Jin YM, Veiga MC, Kennes C (2005) Bioprocesses for the removal of nitrogen oxides from polluted air. J Chem Technol Biot 80:483–494. doi: 10.1002/jctb.1260 CrossRefGoogle Scholar
  22. Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann JM, Bouallou C (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62. doi: 10.1016/j.applthermaleng.2009.05.005 CrossRefGoogle Scholar
  23. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380. doi: 10.1016/j.tibtech.2010.04.004 CrossRefPubMedGoogle Scholar
  24. Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol 152:225–233. doi: 10.1016/j.biortech.2013.10.098 CrossRefPubMedGoogle Scholar
  25. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. doi: 10.1016/j.rser.2009.07.020 CrossRefGoogle Scholar
  26. Mccarthy G (2013) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2011. Fed Regist 33:273–279Google Scholar
  27. Miron AS, Garciia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297. doi: 10.1016/S1369-703x(03)00072-X CrossRefGoogle Scholar
  28. Nagase H, Yoshihara K, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamoto K (1997) Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system. J Ferment Bioeng 83:461–465. doi: 10.1016/S0922-338x(97)83001-2 CrossRefGoogle Scholar
  29. Napan K, Teng LH, Quinn JC, Wood BD (2015) Impact of heavy metals from flue gas integration with microalgae production. Algal Res 8:83–88. doi: 10.1016/j.algal.2015.01.003 CrossRefGoogle Scholar
  30. Niu HJY, Leung DYC (2010) A review on the removal of nitrogen oxides from polluted flow by bioreactors. Environ Rev 18:175–189. doi: 10.1139/A10-007 CrossRefGoogle Scholar
  31. Olofsson M, Lindehoff E, Frick B, Svensson F, Legrand C (2015) Baltic Sea microalgae transform cement flue gas into valuable biomass. Algal Res 11:227–233. doi: 10.1016/j.algal.2015.07.001 CrossRefGoogle Scholar
  32. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053. doi: 10.1016/j.rser.2012.02.055 CrossRefGoogle Scholar
  33. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. doi: 10.1007/s00253-004-1647-x CrossRefPubMedGoogle Scholar
  34. Rahaman MSA, Cheng LH, Xu XH, Zhang L, Chen HL (2011) A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sust Energ Rev 15:4002–4012. doi: 10.1016/j.rser.2011.07.031 CrossRefGoogle Scholar
  35. Santiago DEO, Jin HF, Lee K (2010) The influence of ferrous-complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp. Process Biochem 45:1949–1953. doi: 10.1016/j.procbio.2010.04.003 CrossRefGoogle Scholar
  36. Seth JR, Wangikar PP (2015) Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery. Biotechnol Bioeng 112:1281–1296. doi: 10.1002/bit.25619 CrossRefPubMedGoogle Scholar
  37. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416. doi: 10.1016/j.biotechadv.2009.03.001 CrossRefPubMedGoogle Scholar
  38. Soletto D, Binaghi L, Ferrari L, Lodi A, Carvalho JCM, Zilli M, Converti A (2008) Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem Eng J 39:369–375. doi: 10.1016/j.bej,2007.10.007 CrossRefGoogle Scholar
  39. Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30:1405–1424. doi: 10.1016/j.biotechadv.2012.02.015 CrossRefGoogle Scholar
  40. Van Den Hende S, Vervaeren H, Desmet S, Boon N (2011) Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol 29:23–31. doi: 10.1016/j.nbt.2011.04.009 CrossRefGoogle Scholar
  41. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718. doi: 10.1007/s00253-008-1518-y CrossRefPubMedGoogle Scholar
  42. Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferment Bioeng 82:351–354. doi: 10.1016/0922-338x(96)89149-5 CrossRefGoogle Scholar
  43. Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon-dioxide from fossil fuel-fired power-plant flue-gas. Energ Convers Manage 36:707–712. doi: 10.1016/0196-8904(95)00103-K CrossRefGoogle Scholar
  44. Zhang X, Chen H, Chen W, Qiao Y, He C, Wang Q (2014) Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases. Environ Sci Technol 48:10497–10504. doi: 10.1021/es5013824 CrossRefPubMedGoogle Scholar
  45. Zhang YM, Chen H, He CL, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8:e69225. doi: 10.1371/journal.pone.0069225 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xi Zhu
    • 1
    • 3
  • Junfeng Rong
    • 2
  • Hui Chen
    • 1
  • Chenliu He
    • 1
  • Wensheng Hu
    • 4
  • Qiang Wang
    • 1
  1. 1.Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.SINOPEC Research Institute of Petroleum ProcessingBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Computer SchoolHubei University of TechnologyWuhanChina

Personalised recommendations