Skip to main content

Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli


Acrylic acid is an important industrial feedstock. In this study, a de novo acrylate biosynthetic pathway from inexpensive carbon source glycerol was constructed in Escherichia coli. The acrylic acid was produced from glycerol via 3-hydroxypropionaldehyde, 3-hydroxypropionyl-CoA, and acrylyl-CoA. The acrylate production was improved by screening and site-directed mutagenesis of key enzyme enoyl-CoA hydratase and chromosomal integration of some exogenous genes. Finally, our recombinant strain produced 37.7 mg/L acrylic acid under shaking flask conditions. Although the acrylate production is low, our study shows feasibility of engineering an acrylate biosynthetic pathway from inexpensive carbon source. Furthermore, the reasons for limited acrylate production and further strain optimization that should be performed in the future were also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  • Alber BE, Fuchs G (2002) Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Biol Chem 277:12137–12143

    CAS  Article  PubMed  Google Scholar 

  • Arya AS, Lee SA, Eiteman MA (2013) Differential sensitivities of the growth of Escherichia coli to acrylate under aerobic and anaerobic conditions and its effect on product formation. Biotechnol Lett 35:1839–1843

    CAS  Article  PubMed  Google Scholar 

  • Asao M, Alber BE (2013) Acrylyl-coenzyme A reductase, an enzyme involved in the assimilation of 3-hydroxypropionate by Rhodobacter sphaeroides. J Bacteriol 195:4716–4725

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cho H, Cronan J (1994) “Protease I” of Escherichia coli functions as a thioesterase in vivo. J Bacteriol 176:1793–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clayden J, Greeves N, Warren S, Wothers P (2001) Organic chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Dalal R, Akedo M, Cooney C, Sinskey A (1980) Microbial route for acrylic acid production. Biosources Dig 2:89–97

    CAS  Google Scholar 

  • Danner H, Ürmös M, Gartner M, Braun R (1998) Biotechnological production of acrylic acid from biomass. Appl Biochem Biotech 70:887–894

    Article  Google Scholar 

  • Duque J (2011) Design and analysis of technological schemes for glycerol conversion to added value products. Universidad Nacional De Colombia, Dissertation

    Google Scholar 

  • Elssner T, Engemann C, Baumgart K, Kleber H-P (2001) Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli. Biochemistry 40:11140–11148

    CAS  Article  PubMed  Google Scholar 

  • Feng X, Ding Y, Xian M, Xu X, Zhang R, Zhao G (2014) Production of optically pure D-lactate from glycerol by engineered Klebsiella pneumoniae strain. Bioresource Technol 172:269–275

    CAS  Article  Google Scholar 

  • Gao Y, Liu C, Ding Y, Sun C, Zhang R, Xian M, Zhao G (2014) Development of genetically stable Escherichia coli strains for poly(3-hydroxypropionate) production. PLoS One 9:e97845

    Article  PubMed  PubMed Central  Google Scholar 

  • Heider J (2001) A new family of CoA-transferases. FEBS Lett 509:345–349

    CAS  Article  PubMed  Google Scholar 

  • Hugler M, Huber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173

    PubMed  Google Scholar 

  • Ishii M, Chuakrut S, Arai H, Igarashi Y (2004) Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Appl Microbiol Biotechnol 64:605–610

    CAS  Article  PubMed  Google Scholar 

  • J.E.C M, SvB v d M, Werkhoven AF v, Laverman AM, Meijer WG, Stam WT, Hansen TA (1996) Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov. Arch Microbiol 166:109–115

    Article  Google Scholar 

  • Larsson N (2012) Analysis of acrylic acid, phosphoric acid and 2-ethylhexylamine in surfactant with capillary electrophoresis. Chalmers University of Technology, Dissertation

    Google Scholar 

  • Moore SD (2011) Assembling new Escherichia coli strains by transduction using phage P1. In: James A (ed) Strain Engineering, Humana Press. pp 155–169

  • Naggert J, Narasimhan M, DeVeaux L, Cho H, Randhawa Z, Cronan J, Green B, Smith S (1991) Cloning, sequencing, and characterization of Escherichia coli thioesterase II. J Biol Chem 266:11044–11050

    CAS  PubMed  Google Scholar 

  • O’Brien DJPCC, Eisele WP (1990) Biological production of acrylic acid from cheese whey by resting cells of Clostridium propionicum. Biotechnol Prog 6:237–242

    Article  Google Scholar 

  • Shen H-Y, Jiang H-L (2005) Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC–UVD, GC–ECD, GC–MS–EI–SIM and GCMS–NCI–SIM methods. Anal Chim Acta 535:33–41

    CAS  Article  Google Scholar 

  • Sinskey AJ, Akedo M, Cooney CL (1981) Acrylate fermentations. In trends in the biology of fermentations for fuels and chemicals. Springer US. pp 473–492

  • Todd JD, Curson AR, Sullivan MJ, Kirkwood M, Johnston AW (2012) The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PLoS One 7:e35947

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184:193–198

    CAS  Article  PubMed  Google Scholar 

  • Unverricht S, Arnold H, Tenten A, Hammon U, Neumann HP, Harth K (2003) Method for the catalytic gas-phase oxidation of propene to acrylic acid. US Patent No 6,525,217

  • Wang C, Guo Z, Liu D, Zhong Z, Borgna A (2013a) Dehydration of lactic acid and 3-hydroxypropionic acid to acrylic acid. Symposium Biorefinery for Food, Fuel and Materials, Netherlands

  • Wang Q, Yang P, Liu C, Xue Y, Xian M, Zhao G (2013b) Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli. Bioresource Technol 131:548–551

    CAS  Article  Google Scholar 

  • Zhuang Z, Song F, Zhao H, Li L, Cao J, Eisenstein E, Herzberg O, Dunaway-Mariano D (2008) Divergence of function in the hot dog fold enzyme superfamily: the bacterial thioesterase YciA. Biochemistry 47:2789–2796

    CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by the 100-Talent Project of CAS (for GZ), CAS Key Program (KGZD-EW-606-1-3), and Taishan Scholars Climbing Program of Shandong (No.TSPD20150210).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Huizhou Liu or Guang Zhao.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tong, W., Xu, Y., Xian, M. et al. Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli . Appl Microbiol Biotechnol 100, 4901–4907 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Acrylic acid biosynthesis
  • Enoyl-CoA hydratase
  • Recombinant Escherichia coli
  • Inexpensive carbon source