Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 12, pp 5415–5426 | Cite as

Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis

  • Vikrant S. Rajput
  • Rukmankesh Mehra
  • Sanjay Kumar
  • Amit Nargotra
  • Parvinder Pal Singh
  • Inshad Ali KhanEmail author
Biotechnologically relevant enzymes and proteins

Abstract

Shikimate kinase of Mycobacterium tuberculosis is involved in the biosynthesis of aromatic amino acids through shikimate pathway. The enzyme is essential for the survival of M. tuberculosis and is absent from mammals, thus providing an excellent opportunity for identifying new chemical entities to combat tuberculosis with a novel mechanism of action. In this study, an antitubercular library of 1000 compounds was screened against M. tuberculosis shikimate kinase (MtSK). This effort led to the identification of 20 inhibitors, among which five promising leads exhibited half maximal inhibitory concentration (IC50) values below 10 μM. The most potent inhibitor (“5631296”) showed an IC50 value of 5.10 μM ± 0.6. The leads were further evaluated for the activity against multidrug-resistant (MDR)-TB, Gram-positive and Gram-negative bacterial strains, mode of action, docking simulations, and combinatorial study with three frontline anti-TB drugs. Compound “5491210” displayed a nearly synergistic activity with rifampicin, isoniazid, and ethambutol while compound “5631296” was synergistic with rifampicin. In vitro cytotoxicity against HepG2 cell line was evaluated and barring one compound; all were found to be non-toxic (SI > 10). In order to rule out mitochondrial toxicity, the promising inhibitors were also evaluated for cell cytotoxicity using galactose medium where compounds “5631296” and “5122752” appeared non-toxic. Upon comprehensive analysis, compound “5631296” was found to be the most promising MtSK inhibitor that was safe, synergistic with rifampicin, and bactericidal against M. tuberculosis.

Keywords

Mycobacterium tuberculosis Shikimate kinase Antitubercular ChemBridge Docking 

Notes

Acknowledgments

The author (VSR) is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for GATE fellowship (7/614/2010-Estt.).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This work was funded by Council of Scientific and Industrial Research (CSIR), New Delhi, India (Grant no. BSC0205).

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2015_7268_MOESM1_ESM.pdf (218 kb)
ESM 1 (PDF 217 kb)

References

  1. An M, Toochinda T, Bartlett PA (2001) Five-membered ring analogues of shikimic acid. J Org Chem 66(4):1326–1333CrossRefPubMedGoogle Scholar
  2. Bandodkar BS, Schmitt S (2007) Pyrazolone derivatives for treatment of tuberculosis. Patent: WO 2007/020426 A1Google Scholar
  3. Bandodkar B, Naik M, Ghorpade S, Kale M, Shanbhag G, Patil V, Solapure S, Balganesh M, Shandil R, Balasubramanian V, Vachaspati P, Kothandaraman S, Panda M, Raichurkar A, Venkatraman J, Paul B, Sheik G, Subbulakshmi V, Ramachandran V, Kaur P, Ravishankar R, Barde S, Giridhar J, Arora U, Reddy J, Gaonkar S, Bharath S, Kumar N, Jayaram R, Datta S, Schmitt S (2009) In: Abstracts of Forty-ninth Interscience Conference on Antimicrob Agents and Chemother, San Francisco, 2009. In: Lead generation via virtual screening: discovery of pyrazolones as potent antimycobacterial leads through structure based virtual screening of shikimate kinase. Abstract F2017. American Society for Microbiology, Washington, DC, 2009Google Scholar
  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blanco B, Prado V, Lence E, Otero JM, Garcia-Doval C, van Raaij M, Llamas-Saiz AL, Lamb H, Hawkins AR, González-Bello C (2013) Mycobacterium tuberculosis shikimate kinase inhibitors: design and simulation studies of the catalytic turnover. Jacs 135(33):12366–12376CrossRefGoogle Scholar
  6. Chatterjee A, Saranath D, Bhatter P, Mistry N (2013) Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance. PLoS One 8(1):e54717CrossRefPubMedPubMedCentralGoogle Scholar
  7. Coggins J (1989) The shikimate pathway as a target for herbicides. In: Dodge A, editor. Cambridge University Press, Herbicides and plant metabolism Cambridge, pp. 97–112Google Scholar
  8. Davies GM, Barrett-Bee KJ, Jude DA, Lehan M, Nichols WW, Pinder PE, Wilson RG (1994) (6S) 6-fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrob Agents and Chemother 38(2):403–406CrossRefGoogle Scholar
  9. Dhaliwal B, Nichols CE, Ren J, Lockyer M, Charles I, Hawkins AR, Stammers DK (2004) Crystallographic studies of shikimate binding and induced conformational changes in Mycobacterium tuberculosis shikimate kinase. FEBS Lett 574(1):49–54CrossRefPubMedGoogle Scholar
  10. Dorsey WC, Tchounwou PB, Sutton D (2004) Mitogenic and cytotoxic effects of pentachlorophenol to AML 12 mouse hepatocytes. Int J Environ Res Public Health 1(2):100–105CrossRefPubMedGoogle Scholar
  11. Eliopoulos GM, Wennersten CB (2002) Antimicrobial activity of quinupristin-dalfopristin combined with other antibiotics against vancomycin-resistant Enterococci. Antimicrob Agents and Chemother 46(5):1319–1324CrossRefGoogle Scholar
  12. Gan J, Gu Y, Li Y, Yan H, Ji X (2006) Crystal structure of Mycobacterium tuberculosis shikimate kinase in complex with shikimic acid and an ATP analogue. Biochemistry 45(28):8539–8545CrossRefPubMedGoogle Scholar
  13. Gordon S, Simithy J, Goodwin DC, Calderón AI (2015) Selective Mycobacterium tuberculosis shikimate kinase inhibitors as potential antibacterials. Perspect in med Chem 7:9Google Scholar
  14. Gu Y, Reshetnikova L, Li Y, Wu Y, Yan H, Singh S, Ji X (2002) Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis. J Mol Biol 319(3):779–789CrossRefPubMedGoogle Scholar
  15. Han C, Zhang J, Chen L, Chen K, Shen X, Jiang H (2007) Discovery of Helicobacter pylori shikimate kinase inhibitors: bioassay and molecular modeling. Bioorg Med Chem 15(2):656–662CrossRefPubMedGoogle Scholar
  16. Hartmann M, Bourenkov G, Oberschall A, Strizhov N, Bartunik H (2006) Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. J Mol Bio 364:411–423CrossRefGoogle Scholar
  17. Hsu KC, Cheng WC, Chen YF, Wang HJ, Li LT, Wang WC, Yang JM (2012) Core site-moiety maps reveal inhibitors and binding mechanisms of orthologous proteins by screening compound libraries. PLoS One 7(2):e32142CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kapnick SM, Zhang Y (2008) New tuberculosis drug development: targeting the shikimate pathway. Expert Opin Drug Discov 3(5):565–577CrossRefPubMedGoogle Scholar
  19. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469(7331):483–490CrossRefPubMedGoogle Scholar
  20. Kumar M, Khan IA, Verma V, Kalyan N, Qazi GN (2005) Rapid, inexpensive MIC determination of Mycobacterium tuberculosis isolates by using microplate nitrate reductase assay. Diagn Microbiol Infect Dis 53(2):121–124CrossRefPubMedGoogle Scholar
  21. Ling LL, Schneider T, Peoples A, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DA, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459CrossRefPubMedGoogle Scholar
  22. Maccari R, Ottana R, Monforte F, Vigorita MG (2002) In vitro antimycobacterial activities of 2′-monosubstituted isonicotinohydrazides and their cyanoborane adducts. Antimicrob Agents Chemother 46(2):294–299CrossRefPubMedPubMedCentralGoogle Scholar
  23. Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97(2):539–547CrossRefPubMedGoogle Scholar
  24. Millar G, Lewendon A, Hunter MG, Coggins JR (1986) The cloning and expression of the aroL gene from Escherichia coli K12. Purification and complete amino acid sequence of shikimate kinase II, the aroL-gene product. Biochem J 237:427–437CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mulabagal V, Calderón AI (2010) Development of an ultrafiltration-liquid chromatography/mass spectrometry (UF-LC/MS) based ligand-binding assay and an LC/MS based functional assay for Mycobacterium tuberculosis shikimate kinase. Anal Chem 82(9):3616–3621CrossRefPubMedGoogle Scholar
  26. Oliveira JS, Pinto CA, Basso LA, Santos DS (2001) Cloning and overexpression in soluble form of functional shikimate kinase and 5-enolpyruvylshikimate 3-phosphate synthase enzymes from Mycobacterium tuberculosis. Protein Express Purif 22(3):430–435CrossRefGoogle Scholar
  27. Parish T, Stoker NG (2002) The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 148(10):3069–3077CrossRefPubMedGoogle Scholar
  28. Pereira JH, de Oliveira JS, Canduri F, Dias MV, Palma MS, Basso LA, Santos DS, de Azevedo WF (2004) Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallographica Section D: Biol Crystallograph 60(12):2310–2319CrossRefGoogle Scholar
  29. Pereira JH, Vasconcelos IB, Oliveira JS, Caceres RA, de Azevedo WF, Basso LA, Santos DS (2007) Shikimate kinase: a potential target for development of novel antitubercular agents. Curr Drug Targets 8(3):459–468CrossRefPubMedGoogle Scholar
  30. Rani C, Mehra R, Sharma R, Chib R, Wazir P, Nargotra A, Khan IA (2015) High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU. Tuberculosis. doi: 10.1016/j.tube.2015.06.003 PubMedGoogle Scholar
  31. Roberts F, Roberts CW, Johnson JJ, Kyle DE, Krell T, Coggins JR, McLeod R (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature 393(6687):801–805CrossRefPubMedGoogle Scholar
  32. Rosado LA, Vasconcelos IB, Palma MS, Frappier V, Najmanovich R, Santos DS, Basso LA (2013) The mode of action of recombinant Mycobacterium tuberculosis shikimate kinase: kinetics and thermodynamics analyses. PLoS One 8(5):e61918CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schrödinger Release 2015: Schrödinger Suite 2015. Schrödinger, LLC, New YorkGoogle Scholar
  34. Simithy J, Reeve N, Hobrath JV, Reynolds RC, Calderón AI (2014) Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Tuberculosis 94(2):152–158CrossRefPubMedGoogle Scholar
  35. Vonrhein C, Schlauderer GJ, Schulz GE (1995) Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure 3(5):483–490CrossRefPubMedGoogle Scholar
  36. Wallace RJ, Nash DR, Steele LC, Steingrube V (1986) Susceptibility testing of slowly growing mycobacteria by a microdilution MIC method with 7H9 broth. J Clin Microbiol 24(6):976–981PubMedPubMedCentralGoogle Scholar
  37. World Health Organization (2014) Global tuberculosis control: WHO report Geneva. World Health Oraganization, GenevaGoogle Scholar
  38. Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vikrant S. Rajput
    • 1
    • 2
  • Rukmankesh Mehra
    • 3
  • Sanjay Kumar
    • 4
  • Amit Nargotra
    • 2
    • 3
  • Parvinder Pal Singh
    • 2
    • 4
  • Inshad Ali Khan
    • 1
    • 2
    Email author
  1. 1.Clinical Microbiology DivisionIndian Institute of Integrative Medicine (CSIR)Jammu TawiIndia
  2. 2.Academy of Scientific & Innovative Research (AcSIR)New DelhiIndia
  3. 3.Discovery InformaticsIndian Institute of Integrative Medicine (CSIR)JammuIndia
  4. 4.Medicinal Chemistry DivisionIndian Institute of Integrative Medicine (CSIR)JammuIndia

Personalised recommendations