Skip to main content

Advertisement

Log in

Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a novel process for phosphorus (P) recovery without excess sludge production from granular sludge in simultaneous nitrification-denitrification and P removal (SNDPR) system is presented. Aerobic microbial granules were successfully cultivated in an alternating aerobic–anaerobic sequencing batch reactor (SBR) for removing P and nitrogen (N). Dense and stable granular sludge was created, and the SBR system showed good performance in terms of P and N removal. The removal efficiency was approximately 65.22 % for N, and P was completely removed under stable operating conditions. Afterward, new operating conditions were applied in order to enhance P recovering without excess sludge production. The initial SBR system was equipped with a batch reactor and a non-woven cloth filter, and 1.37 g of CH3COONa·3H2O was added to the batch reactor after mixing it with 1 L of sludge derived from the SBR reactor to enhance P release in the liquid fraction, this comprises the new system configuration. Under the new operating conditions, 93.19 % of the P contained in wastewater was released in the liquid fraction as concentrated orthophosphate from part of granular sludge. This amount of P could be efficiently recovered in the form of struvite. Meanwhile, a deterioration of the denitrification efficiency was observed and the granules were disintegrated into smaller particles. The biomass concentration in the system increased firstly and then maintained at 4.0 ± 0.15 gVSS/L afterward. These results indicate that this P recovery operating (PRO) mode is a promising method to recover P in a SNDPR system with granular sludge. In addition, new insights into the granule transformation when confronted with high chemical oxygen demand (COD) load were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn J, Daidou T, Tsuneda S, Hirata A (2002) Transformation of phosphorus and relevant intracellular compounds by a phosphorus-accumulating enrichment culture in the presence of both the electron acceptor and electron donor. Biotechnol Bioeng 79(1):83–93. doi:10.1002/bit.10292

    Article  CAS  PubMed  Google Scholar 

  • Bos R, Van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol Rev 23(2):179–230

    Article  CAS  PubMed  Google Scholar 

  • Burns R, Moody L, Celen I, Buchanan J (2003) Optimization of phosphorus precipitation from swine manure slurries to enhance recovery. Water Sci Technol 48(1):139–146

    CAS  PubMed  Google Scholar 

  • Campos JL, Otero L, Franco A, Mosquera-Corral A, Roca E (2009) Ozonation strategies to reduce sludge production of a seafood industry WWTP. Bioresour Technol 100(3):1069–1073. doi:10.1016/j.biortech.2008.07.056

    Article  CAS  PubMed  Google Scholar 

  • Cordell D, Rosemarin A, Schröder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84(6):747–758. doi:10.1016/j.chemosphere.2011.02.032

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Park S, Kim M (2014) Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment. Bioresour Technol 151:78–84. doi:10.1016/j.biortech.2013.10.025

    Article  CAS  PubMed  Google Scholar 

  • D’Abzac P, Bordas F, Van Hullebusch E, Lens PNL, Guibaud G (2010) Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Appl Microbiol Biotechnol 85(5):1589–1599

    Article  PubMed  Google Scholar 

  • Dangcong P, Bernet N, Delgenes J-P, Moletta R (1999) Aerobic granular sludge—a case report. Water Res 33(3):890–893. doi:10.1016/S0043-1354(98)00443-6

    Article  Google Scholar 

  • Fr B, Griebe T, Nielsen PH (1995) Enzymatic activity in the activated-sludge floc matrix. Appl Microbiol Biotechnol 43(4):755–761

    Article  Google Scholar 

  • Ghangrekar MM, Asolekar SR, Ranganathan KR, Joshi SG (1996) Experience with UASB reactor start-up under different operating conditions. Water Sci Technol 34(5–6):421–428. doi:10.1016/0273-1223(96)00674-9

    Article  CAS  Google Scholar 

  • Guisasola A, Pijuan M, Baeza JA, Carrera J, Casas C, Lafuente J (2004) Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate. Biotechnol Bioeng 85(7):722–733. doi:10.1002/bit.10868

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Huang W, Li H, Lei Z, Zhang Z, Tay JH, Lee D-J (2015) Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge. Bioresour Technol 193:549–552. doi:10.1016/j.biortech.2015.06.120

    Article  CAS  PubMed  Google Scholar 

  • Kodera H, Hatamoto M, Abe K, Kindaichi T, Ozaki N, Ohashi A (2013) Phosphate recovery as concentrated solution from treated wastewater by a PAO-enriched biofilm reactor. Water Res 47(6):2025–2032. doi:10.1016/j.watres.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Liu QS, Yang SF, Tay JH, Liu Y (2004) Stressful conditions-induced production of extracellular polysaccharides in aerobic granulation process. Civil Eng Res 17:49–51

    Google Scholar 

  • Li W-W, Zhang H-L, Sheng G-P, Yu H-Q (2015) Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. Water Res 86:85–95. doi:10.1016/j.watres.2015.06.034

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zou J, Zhang L, Sun J (2014) Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater. Bioresour Technol 154(0):178–184. doi:10.1016/j.biortech.2013.12.033

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Du Y, Deng Y, Ye PD (2015) Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev 44(9):2732–2743. doi:10.1039/C4CS00257A

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Oehmen A, Virdis B, Keller J, Yuan Z (2006) Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Water Res 40(20):3838–3848

    Article  CAS  PubMed  Google Scholar 

  • Mino T, van Loosdrecht MCM, Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32(11):3193–3207. doi:10.1016/S0043-1354(98)00129-8

    Article  CAS  Google Scholar 

  • Muda K, Aris A, Salim MR, Ibrahim Z, van Loosdrecht MCM, Ahmad A, Nawahwi MZ (2011) The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater. Water Res 45(16):4711–4721. doi:10.1016/j.watres.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  • Münch EV, Barr K (2001) Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res 35(1):151–159. doi:10.1016/S0043-1354(00)00236-0

    Article  PubMed  Google Scholar 

  • Murnleitner E, Kuba T, vanLoosdrecht MCM, Heijnen JJ (1997) An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnol Bioeng 54(5):434–450

    Article  CAS  PubMed  Google Scholar 

  • Murray A, Horvath A, Nelson KL (2008) Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China. Environ Sci Technol 42(9):3163–3169. doi:10.1021/es702256w

    Article  CAS  PubMed  Google Scholar 

  • Ni B-J, Xie W-M, Liu S-G, Yu H-Q, Wang Y-Z, Wang G, Dai X-L (2009) Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res 43(3):751–761. doi:10.1016/j.watres.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  • Parsons SA, Smith JA (2008) Phosphorus removal and recovery from municipal wastewaters. Elements 4(2):109–112. doi:10.2113/gselements.4.2.109

    Article  CAS  Google Scholar 

  • Paul E, Laval ML, Sperandio M (2001) Excess sludge production and costs due to phosphorus removal. Environ Technol 22(11):1363–1371. doi:10.1080/09593332208618195

    Article  CAS  PubMed  Google Scholar 

  • Reijnders L (2014) Phosphorus resources, their depletion and conservation, a review. Resour Conserv Recycl 93:32–49. doi:10.1016/j.resconrec.2014.09.006

    Article  Google Scholar 

  • Rice EW, Bridgewater L, American Public Health Association (2012) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Seviour T, Pijuan M, Nicholson T, Keller J, Yuan Z (2009) Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Res 43(18):4469–4478. doi:10.1016/j.watres.2009.07.018

    Article  CAS  PubMed  Google Scholar 

  • Sheng G-P, Yu H-Q, Yu Z (2005) Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl Microbiol Biotechnol 67(1):125–130. doi:10.1007/s00253-004-1704-5

    Article  CAS  PubMed  Google Scholar 

  • Thaveesri J, Daffonchio D, Liessens B, Vandermeren P, Verstraete W (1995) Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics. Appl Environ Microbiol 61(10):3681–3686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Lu S, Wei Y, Ji M (2009) Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. J Hazard Mater 164(2–3):1223–1227. doi:10.1016/j.jhazmat.2008.09.034

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang S, Xue T, Li B, Dai X, Peng Y (2015) Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Res 77:191–200. doi:10.1016/j.watres.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Shi L, Yan T, Zhang G, Wang Y, Du B (2014) Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor. Bioresour Technol 171:211–216. doi:10.1016/j.biortech.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y (2003) Minimization of excess sludge production for biological wastewater treatment. Water Res 37(18):4453–4467. doi:10.1016/S0043-1354(03)00441-X

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang Y, Yuan Z, Gao L (2015) A review of phosphorus management through the food system: identifying the roadmap to ecological agriculture. J Clean Prod. doi:10.1016/j.jclepro.2015.07.073

  • Xia CW, Ma YJ, Zhang F, Lu YZ, Zeng RJ (2014) A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition. Appl Biochem Biotechnol 172(2):820–828. doi:10.1007/s12010-013-0575-6

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Li XY, Yu HQ (2008) Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochem 43(1):8–14. doi:10.1016/j.procbio.2007.10.008

    Article  Google Scholar 

  • Yilmaz G, Lemaire R, Keller J, Yuan Z (2008) Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnol Bioeng 100(3):529–541. doi:10.1002/bit.21774

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Pratt S, Batstone DJ (2012) Phosphorus recovery from wastewater through microbial processes. Curr Opin Biotechnol 23(6):878–883. doi:10.1016/j.copbio.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  • Zeng RJ, Lemaire R, Yuan Z, Keller J (2003) Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnol Bioeng 84(2):170–178. doi:10.1002/bit.10744

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Sun P, Lou J, Fang Z, Guo M, Song Y, Tang X, Jiang T (2013) The long-term effect of nitrite on the granule-based enhanced biological phosphorus removal system and the reversibility. Bioresour Technol 132:333–341. doi:10.1016/j.biortech.2013.01.042

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y-M, Yu H-Q, Sheng G-P (2005) Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochem 40(2):645–650. doi:10.1016/j.procbio.2004.01.056

    Article  CAS  Google Scholar 

  • Zhou Y, Lim M, Harjono S, Ng WJ (2012) Nitrous oxide emission by denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon source. J Environ Sci 24(9):1616–1623. doi:10.1016/S1001-0742(11)60996-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Hundred-Talent Program of Chinese Academy of Sciences, the Program for Changjiang Scholars and Innovative Research Team in University, and the Fundamental Research Funds for the Central Universities (wk2060190040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Zeng.

Ethics declarations

Conflict of interest

The authors declare that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, YZ., Wang, HF., Kotsopoulos, T.A. et al. Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process. Appl Microbiol Biotechnol 100, 4367–4374 (2016). https://doi.org/10.1007/s00253-015-7249-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7249-y

Keywords

Navigation