Skip to main content
Log in

Characterization of binding preference of polyhydroxyalkanoate biosynthesis-related multifunctional protein PhaM from Ralstonia eutropha

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The binding preference of a polyhydroxyalkanoate (PHA) biosynthesis-related multifunctional protein from Ralstonia eutropha (PhaMRe) was characterized. In vitro activity assay showed that PHA synthase from R. eutropha (PhaCRe) was activated by the presence of PhaMRe but PHA synthase from Aeromonas caviae (PhaCAc) was not. Additionally, in vitro assays of protein-protein interactions demonstrated that PhaMRe interacted with PhaCRe directly, but did not interact with PhaCAc. These results suggest that the protein-protein interaction is important for the activation of PhaC by PhaMRe. Further analyses indicated that PhaMRe has little or no direct interaction with the PHA polymer chain. Subsequently, PHA biosynthesis genes (phaA Re, phaB Re, and phaC Re/phaC Ac) and the phaM Re gene were introduced into recombinant Escherichia coli and cultivated for PHA accumulation. Contrary to our expectations, the expression of PhaMRe decreased PHA accumulation and changed the morphology of PHA granules to be microscopically obscure shape in PhaCRe-expressing E. coli. No change in the amount of P(3HB) or the morphology of granules by PhaMRe expression was observed in PhaCAc-expressing E. coli. These observations suggest that PhaMRe affects cellular physiology through the PhaM-PhaC interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Cho M, Brigham CJ, Sinskey AJ, Stubbe J (2012) Purification of polyhydroxybutyrate synthase from its native organism, Ralstonia eutropha: implications for the initiation and elongation of polymer formation in vivo. Biochemistry 51:2276–2288. doi:10.1021/bi2013596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui T, Yoshimoto A, Matsumoto M, Hosokawa S, Saito T, Nishikawa H, Tomita K (1976) Enzymatic synthesis of poly-(R)-hydroxybutyrate in Zoogloea ramigera. Arch Microbiol 110:149–156. doi:10.1007/BF00690222

    Article  CAS  PubMed  Google Scholar 

  • Fukui T, Kichise T, Iwata T, Doi Y (2001) Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromolecules 2:148–153. doi:10.1021/bm0056052

    Article  CAS  PubMed  Google Scholar 

  • Gerngross TU, Martin DP (1995) Enzyme-catalyzed synthesis of poly[(R)-(−)-3-hydroxybutyrate]:Formation of macroscopic granules in vitro. Proc Natl Sci USA 92:6279–6283

    Article  CAS  Google Scholar 

  • Gerngross TU, Snell KD, Peoples OP, Sinskey AJ (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: Evidence for a required posttranslational modification for catalytic activity. Biochemistry 33:9311–9320. doi:10.1021/bi00197a035

    Article  CAS  PubMed  Google Scholar 

  • Hiroe A, Hyakutake M, Thomson N, Sivaniah E, Tsuge T (2013) Endogenous ethanol affects biopolyester molecular weight in Recombinant Escherichia coli. ACS Chem Biol 8:2568–2576. doi:10.1021/cb400465p

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek D (2005) Fluorescence microscopical investigation of poly(3-hydroxybutyrate) granule formation in bacteria. Biomacromolecules 6:598–603. doi:10.1021/bm049441r

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373. doi:10.1111/1462-2920.12356

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Yuan W, Wodzinska J, Park C, Sinskey AJ, Stubbe J (2001) Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochemistry 40:1011–1019. doi:10.1021/bi002219w

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Bao HJ, Kang CK, Fukui T, Doi Y (1996) Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61–3 from sugars. Appl Microbiol Biotechnol 45:363–370. doi:10.1007/s002530050697

    Article  CAS  Google Scholar 

  • Normi YM, Hiraishi T, Taguchi S, Abe H, Sudesh K, Najimudin N, Doi Y (2005) Characterization and properties of G4X mutants of Ralstonia eutropha PHA synthase for poly(3-hydroxybutyrate) biosynthesis in Escherichia coli. Macromol Biosci 5:197–206. doi:10.1002/mabi.200400181

    Article  CAS  PubMed  Google Scholar 

  • Peters V, Rehm BHA (2005) In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. FEMS Microbiol Lett 248:93–100. doi:10.1016/j.femsle.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer D, Jendrossek D (2013) Development of a transferable bimolecular fluorescence complementation system for the investigation of interactions between poly(3-Hydroxybutyrate) granule-associated proteins in gram-negative bacteria. Appl Environ Microbiol 79:2989–2999. doi:10.1128/AEM.03965-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer D, Jendrossek D (2014) PhaM is the physiological activator of PHB synthase (PhaC1) in Ralstonia eutropha. Appl Environ Microbiol 80:555–563. doi:10.1128/AEM.02935-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer D, Wahl A, Jendrossek D (2011) Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol 82:936–951. doi:10.1111/j.1365-2958.2011.07869.x

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. J Biochem 376:15–33. doi:10.1042/BJ20031254

    Article  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. doi:10.1016/S0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  • Tian SJ, Lai WJ, Zheng Z, Wang HX, Chen GQ (2005) Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiol Lett 244:19–25. doi:10.1016/j.femsle.2005.01.020

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru K, Sangiambut S, Thomson N, Sivaniah E, Tsuge T (2013) New insights into activation and substrate recognition of polyhydroxyalkanoate synthase from Ralstonia eutropha. Appl Microbiol Biotechnol 97:1175–1182. doi:10.1007/s00253-012-4089-x

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru K, Motoda Y, Numata K, Tsuge T (2014) Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase. Appl Environ Microbiol 80:2867–2873. doi:10.1128/AEM.04179-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Ushimaru K, Watanabe Y, Hiroe A, Tsuge T (2015) A single-nucleotide substitution in phasin gene leads to enhanced accumulation of polyhydroxyalkanoate (PHA) in Escherichia coli harboring Aeromonas caviae PHA biosynthetic operon. J Gen Appl Microbiol 61:63–66. doi:10.2323/jgam.61.63

    Article  CAS  PubMed  Google Scholar 

  • Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D (2012) PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 12:262. doi:10.1186/1471-2180-12-262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York GM, Stubbe JA, Sinskey AJ (2001) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397. doi:10.1128/JB.183.7.2394-2397.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York GM, Stubbe JA, Sinskey AJ (2002) The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184:59–66. doi:10.1128/JB.184.1.59-66.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Yasuo T, Lenz RW, Goodwin S (2000) Kinetic and mechanistic characterization of the polyhydroxybutyrate synthase from Ralstonia eutropha. Biomacromolecules 1:244–251. doi:10.1021/bm005513c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the JSPS young scientist fellowship (13J07410) for K. Ushimaru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Ushimaru.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The authors confirm that ethical principles and this study does not contain any studies with human participants or animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushimaru, K., Tsuge, T. Characterization of binding preference of polyhydroxyalkanoate biosynthesis-related multifunctional protein PhaM from Ralstonia eutropha . Appl Microbiol Biotechnol 100, 4413–4421 (2016). https://doi.org/10.1007/s00253-015-7225-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7225-6

Keywords

Profiles

  1. Takeharu Tsuge