Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 4, pp 1543–1557 | Cite as

Antibiotic resistance in urban aquatic environments: can it be controlled?

  • Célia M. ManaiaEmail author
  • Gonçalo Macedo
  • Despo Fatta-Kassinos
  • Olga C. Nunes
Mini-Review

Abstract

Over the last decade, numerous evidences have contributed to establish a link between the natural and human-impacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes. Therefore, the urban water cycle, comprising water abstraction, disinfection, and distribution for human consumption, and the collection, treatment, and delivery of wastewater to the environment, is a particularly interesting loop to track the fate of antibiotic resistance in the environment and to assess the risks of its transmission back to humans. In this article, the relevance of different transepts of the urban water cycle on the potential enrichment and spread of antibiotic resistance is reviewed. According to this analysis, some gaps of knowledge, research needs, and control measures are suggested. The critical rationale behind the measures suggested and the desirable involvement of some key action players is also discussed.

Keywords

Water treatment Disinfection Risk assessment Database Environment-clinical relationship 

Notes

Acknowledgments

Financial support for this work was provided by project NORTE-07-0202-FEDER-038900 (NEPCAT), financed by Fundo Europeu de Desenvolvimento Regional (FEDER) through ON2 (Programa Operacional do Norte). This work was partially cofinanced by Fundação para a Ciência e a Tecnologia (FCT)/MEC and PIDDAC funds through projects PEst-OE/EQB/LA0016/2013 and WaterJPI/0001/2013 STARE - Stopping Antibiotic Resistance Evolution.” The authors would like to acknowledge the COST-European Cooperation in Science and Technology Action ES1403: new and emerging challenges and opportunities in wastewater reuse (NEREUS) for stimulating the work implemented in the manuscript.

Ethical statement

The content of this article is the authors’ responsibility and neither the financing entities nor any person acting on their behalf is responsible for the use, which might be made of the information contained in it.

References

  1. Alvarez-Ortega C, Wiegand I, Olivares J, Hancock REW, Martínez JL (2011) The intrinsic resistome of Pseudomonas aeruginosa to β-lactams. Virulence 2:144–146. doi: 10.4161/viru.2.2.15014 CrossRefPubMedGoogle Scholar
  2. Amos GC, Gozzard E, Carter CE, Mead A, Bowes MJ, Hawkey PM, Zhang L, Singer AC, Gaze WH, Wellington EMH (2015) Validated predictive modelling of the environmental resistome. ISME J 9:1467–1476. doi: 10.1038/ismej.2014.237 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478. doi: 10.1038/nrmicro3270 CrossRefPubMedGoogle Scholar
  4. Auerbach E a, Seyfried EE, McMahon KD (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41:1143–1151. doi: 10.1016/j.watres.2006.11.045 CrossRefPubMedGoogle Scholar
  5. Becerra-Castro C, Lopes AR, Vaz-Moreira I, Silva EF, Manaia CM, Nunes OC (2015) Wastewater reuse in irrigation: a microbiological perspective on implications in soil fertility and human and environmental health. Environ Int 75:117–135. doi: 10.1016/j.envint.2014.11.001 CrossRefPubMedGoogle Scholar
  6. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M (2014) A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 14:13. doi: 10.1186/1471-2334-14-13 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons M-N, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–7. doi: 10.1038/nrmicro3439 CrossRefPubMedGoogle Scholar
  8. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942. doi: 10.1111/1462-2920.12134 CrossRefPubMedGoogle Scholar
  9. Cengiz M, Uslu MO, Balcioglu I (2010) Treatment of E. coli HB101 and the tetM gene by Fenton’s reagent and ozone in cow manure. J Environ Manage 91:2590–2593. doi: 10.1016/j.jenvman.2010.07.005 CrossRefPubMedGoogle Scholar
  10. Conner-Kerr TA, Sullivan PK, Gaillard J, Franklin ME, Jones RM (1998) The effects of ultraviolet radiation on antibiotic-resistant bacteria in vitro. Ostomy Wound Manage 44:50–56PubMedGoogle Scholar
  11. Costa D, Poeta P, Sáenz Y, Vinué L, Rojo-Bezares B, Jouini A, Zarazaga M, Rodrigues J, Torres C (2006) Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal [4]. J Antimicrob Chemother 58:1311–1312CrossRefPubMedGoogle Scholar
  12. Council Directive 98/83/EC (1998) of 3 November 1998 on the quality of water intended for human consumption as Amended by Regulation 1882/2003/EC.Google Scholar
  13. D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477:457–461. doi: 10.1038/nature10388 CrossRefPubMedGoogle Scholar
  14. Dodd MC (2012) Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monit 14:1754. doi: 10.1039/c2em00006g CrossRefPubMedGoogle Scholar
  15. Done HY, Venkatesan AK, Halden RU (2015) Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? AAPS J 17:513–524. doi: 10.1208/s12248-015-9722-z CrossRefPubMedGoogle Scholar
  16. ECDC (2012) Antimicrobial resistance surveillance in Europe 2011. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net), StockholmGoogle Scholar
  17. ECDC (2015) ECDC / EFSA / EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA Journal 13(1):4006Google Scholar
  18. Eichler S, Christen R, Holtje C, Westphal P, Botel J, Brettar I, Mehling A, Hofle MG (2006) Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl Environ Microbiol 72:1858–1872. doi: 10.1128/AEM.72.3.1858-1872.2006 PubMedCentralCrossRefPubMedGoogle Scholar
  19. EPA (1986) Ambient Water Quality Criteria for Bacteria - 1986. Regulations and Standards Criteria and Standards Division Office of Water EPA440/5-84-002, Washington DC, USAGoogle Scholar
  20. EPA Victoria (2002) Guidelines for Enviornmental Managemnet. Disinfection of treated wastewater. Publication 730, Victoria Australia, 0 7306 7623 4 Google Scholar
  21. Fajardo A, Martínez-Martín N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tümmler B, Baquero F, Martínez JL (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS One 3, e1619. doi: 10.1371/journal.pone.0001619 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Ferreira da Silva M, Tiago I, Veríssimo A, Boaventura R a R, Nunes OC, Manaia CM (2006) Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiol Ecol 55:322–9. doi: 10.1111/j.1574-6941.2005.00032.x CrossRefPubMedGoogle Scholar
  23. Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM (2007) Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60:166–176. doi: 10.1111/j.1574-6941.2006.00268.x CrossRefPubMedGoogle Scholar
  24. Ferro G, Polo-López MI, Martínez-Piernas AB, Fernández-Ibáñez P, Agüera A, Rizzo L (2015) Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2. Environ Sci Technol 150825123921009. doi:  10.1021/acs.est.5b02613
  25. Figueira V, Vaz-Moreira I, Silva M, Manaia CM (2011) Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Res 45:5599–5611. doi: 10.1016/j.watres.2011.08.021 CrossRefPubMedGoogle Scholar
  26. Fondi M, Fani R (2010) The horizontal flow of the plasmid resistome: clues from inter-generic similarity networks. Environ Microbiol 12:3228–3242. doi: 10.1111/j.1462-2920.2010.02295.x CrossRefPubMedGoogle Scholar
  27. GEMS-Water (2014) Water Quality Outlook. UN GEMS/Water Programme Office, Ontario, Canada, 95039-11-4 Google Scholar
  28. Graham DW, Olivares-Rieumont S, Knapp CW, Lima L, Werner D, Bowen E (2011) Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environ Sci Technol 45:418–424. doi: 10.1021/es102473z PubMedCentralCrossRefPubMedGoogle Scholar
  29. Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-Zorn B, Barbe J, Ploy M-C, Mazel D (2009) The SOS response controls integron recombination. Science (80- ) 324:1034–1034. doi: 10.1126/science.1172914 CrossRefGoogle Scholar
  30. Guo MT, Bin YQ, Yang J (2013a) Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 93:2864–2868. doi: 10.1016/j.chemosphere.2013.08.068
  31. Guo M-T, Yuan Q-B, Yang J (2013b) Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant. Water Res 47:6388–6394. doi: 10.1016/j.watres.2013.08.012
  32. Hoefel D, Monis PT, Grooby WL, Andrews S, Saint CP (2005) Profiling bacterial survival through a water treatment process and subsequent distribution system. J Appl Microbiol 99:175–186. doi: 10.1111/j.1365-2672.2005.02573.x CrossRefPubMedGoogle Scholar
  33. Huerta B, Marti E, Gros M, López P, Pompêo M, Armengol J, Barceló D, Balcázar JL, Rodríguez-Mozaz S, Marcé R (2013) Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ 456–457:161–170. doi: 10.1016/j.scitotenv.2013.03.071 CrossRefPubMedGoogle Scholar
  34. ISO 9308–1:2014 Enumeration of Escherichia coli and coliform bacteria - Part 1: membrane filtration method for waters with low bacterial background flora.Google Scholar
  35. Kaplan E, Ofek M, Jurkevitch E, Cytryn E (2013) Characterization of fluoroquinolone resistance and qnr diversity in Enterobacteriaceae from municipal biosolids. Front Microbiol 4:1–7. doi: 10.3389/fmicb.2013.00144 CrossRefGoogle Scholar
  36. Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect 9:1203–1214. doi: 10.1111/j.1469-0691.2003.00739.x CrossRefPubMedGoogle Scholar
  37. Laht M, Karkman A, Voolaid V, Ritz C, Tenson T, Virta M, Kisand V (2014) Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. PLoS One 9:1–8. doi: 10.1371/journal.pone.0103705 CrossRefGoogle Scholar
  38. LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environ Sci Technol 45:9543–9549. doi: 10.1021/es202775r CrossRefPubMedGoogle Scholar
  39. Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, Zhang T (2015) Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. doi: 10.1038/ismej.2015.59 Google Scholar
  40. Łuczkiewicz a, Jankowska K, Fudala-Książek S, Olańczuk-Neyman K (2010) Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res 44:5089–5097. doi: 10.1016/j.watres.2010.08.007 CrossRefPubMedGoogle Scholar
  41. Lüddeke F, Heß S, Gallert C, Winter J, Güde H, Löffler H (2015) Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques. Water Res 69:243–251. doi: 10.1016/j.watres.2014.11.018 CrossRefPubMedGoogle Scholar
  42. Manaia CM, Novo A, Coelho B, Nunes OC (2010) Ciprofloxacin resistance in domestic wastewater treatment plants. Water Air Soil Pollut 208:335–343CrossRefGoogle Scholar
  43. Manaia CM, Vaz-Moreira I, Nunes OC (2011) Antibiotic Resistance in Waste Water and Surface Water and Human Health Implications. In: Barceló D (ed) Springer. Berlin Heidelberg, Berlin, Heidelberg, pp 173–212Google Scholar
  44. Martínez JL, Coque TM, Baquero F (2015) Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat Rev Microbiol 13:396. doi: 10.1038/nrmicro3399-c2 CrossRefPubMedGoogle Scholar
  45. Michael I, Hapeshi E, Michael C, Varela a R, Kyriakou S, Manaia CM, Fatta-Kassinos D (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634. doi: 10.1016/j.watres.2012.07.049 CrossRefPubMedGoogle Scholar
  46. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47:957–95. doi: 10.1016/j.watres.2012.11.027 CrossRefPubMedGoogle Scholar
  47. Michael-Kordatou I, Iacovou M, Frontistis Z, Hapeshi E, Dionysiou DD, Fatta-Kassinos D (2015) Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation. Water Res 85:346–358. doi: 10.1016/j.watres.2015.08.050 CrossRefPubMedGoogle Scholar
  48. Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–93. doi: 10.1016/j.watres.2010.08.033 CrossRefPubMedGoogle Scholar
  49. Narciso-da-Rocha C, Vaz-Moreira I, Svensson-Stadler L, Moore ERB, Manaia CM (2013) Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol 97:329–340. doi: 10.1007/s00253-012-4190-1 CrossRefPubMedGoogle Scholar
  50. Narciso-da-Rocha C, Varela AR, Schwartz T, Nunes OC, Manaia CM (2014) blaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospital–urban wastewater treatment plant system. J Glob Antimicrob Resist 2:309–315. doi: 10.1016/j.jgar.2014.10.001 CrossRefGoogle Scholar
  51. Negreanu Y, Pasternak Z, Jurkevitch E, Cytryn E (2012) Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ Sci Technol 46:4800–8. doi: 10.1021/es204665b CrossRefPubMedGoogle Scholar
  52. Nesme J, Cécillon S, Delmont TO, Monier J-M, Vogel TM, Simonet P (2014) Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 24:1096–1100. doi: 10.1016/j.cub.2014.03.036 CrossRefPubMedGoogle Scholar
  53. Nguyen TT, Guedj J, Chachaty E, de Gunzburg J, Andremont A, Mentré F (2014) Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant enterobacteria excreted. PLoS Comput Biol 10, e1003840. doi: 10.1371/journal.pcbi.1003840 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Norton-Brandão D, Scherrenberg SM, van Lier JB (2013) Reclamation of used urban waters for irrigation purposes - a review of treatment technologies. J Environ Manage 122:85–98. doi: 10.1016/j.jenvman.2013.03.012 CrossRefPubMedGoogle Scholar
  55. Novais C, Coque TM, Ferreira H, Sousa JC, Peixe L (2005) Environmental contamination with vancomycin-resistant enterococci from hospital sewage in Portugal. Appl Environ Microbiol 71:3364–3368. doi: 10.1128/AEM.71.6.3364-3368.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  56. Novo A, Manaia CM (2010) Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Appl Microbiol Biotechnol 87:1157–66. doi: 10.1007/s00253-010-2583-6 CrossRefPubMedGoogle Scholar
  57. Novo A, André S, Viana P, Nunes OC, Manaia CM (2013) Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res 47:1875–1887. doi: 10.1016/j.watres.2013.01.010 CrossRefPubMedGoogle Scholar
  58. Öncü NB, Menceloğlu YZ, Balcioğlu IA (2011) Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution. J Adv Oxid Technol 14:196–203(8)Google Scholar
  59. Perry JA, Wright GD (2014) Forces shaping the antibiotic resistome. BioEssays 36:1179–1184. doi: 10.1002/bies.201400128 CrossRefPubMedGoogle Scholar
  60. Poole K (2012) Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 67:2069–2089. doi: 10.1093/jac/dks196 CrossRefPubMedGoogle Scholar
  61. Port J a, Cullen AC, Wallace JC, Smith MN, Faustman EM (2014) Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228. doi: 10.1289/ehp.1307009 PubMedCentralCrossRefPubMedGoogle Scholar
  62. Rahube TO, Marti R, Scott A, Tien Y-C, Murray R, Sabourin L, Zhang Y, Duenk P, Lapen DR, Topp E (2014) Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. Appl Environ Microbiol 80:6898–6907. doi: 10.1128/AEM.02389-14 PubMedCentralCrossRefPubMedGoogle Scholar
  63. Rizzo L, Fiorentino A, Anselmo A (2013a) Advanced treatment of urban wastewater by UV radiation: effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere 92:171–176. doi: 10.1016/j.chemosphere.2013.03.021 CrossRefPubMedGoogle Scholar
  64. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013b) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360. doi: 10.1016/j.scitotenv.2013.01.032 CrossRefPubMedGoogle Scholar
  65. Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego CM, Barceló D, Balcázar JL (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234–242. doi: 10.1016/j.watres.2014.11.021 CrossRefPubMedGoogle Scholar
  66. Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43:325–335. doi: 10.1111/j.1574-6941.2003.tb01073.x CrossRefPubMedGoogle Scholar
  67. Segura P a, François M, Gagnon C, Sauvé S (2009) Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ Health Perspect 117:675–684. doi: 10.1289/ehp.11776 PubMedCentralCrossRefPubMedGoogle Scholar
  68. Segura P a, Takada H, Correa J, El Saadi K, Koike T, Onwona-Agyeman S, Ofosu-Anim J, Sabi EB, Wasonga OV, Mghalu JM, dos Santos AM, Newman B, Weerts S, Yargeau V (2015) Global occurrence of anti-infectives in contaminated surface waters: impact of income inequality between countries. Environ Int 80:89–97. doi: 10.1016/j.envint.2015.04.001 CrossRefPubMedGoogle Scholar
  69. Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:1–10. doi: 10.3389/fmicb.2012.00399 CrossRefGoogle Scholar
  70. Simões RR, Poirel L, Da Costa PM, Nordmann P (2010) Seagulls and beaches as reservoirs for multidrug-resistant Escherichia coli. Emerg Infect Dis 16:110–112. doi: 10.3201/eid1601.090896 PubMedCentralCrossRefPubMedGoogle Scholar
  71. Skippington E, Ragan M (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 35:707–735. doi: 10.1111/j.1574-6976.2010.00261.x CrossRefPubMedGoogle Scholar
  72. Tello A, Austin B, Telfer TC (2012) Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ Health Perspect 120:1100–6. doi: 10.1289/ehp.1104650 PubMedCentralCrossRefPubMedGoogle Scholar
  73. Toleman MA, Bugert JJ, Nizam SA (2015) Extensively drug-resistant New Delhi Metallo-β-Lactamase–encoding bacteria in the environment, Dhaka, Bangladesh, 2012. Emerg Infect Dis 21:1027–1030. doi: 10.3201/eid2106.141578 PubMedCentralCrossRefPubMedGoogle Scholar
  74. UNICEF/WHO (2015) Progress on sanitation and drinking water - 2015 Update and MDG AssessmentGoogle Scholar
  75. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin S a, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14:742–750. doi: 10.1016/S1473-3099(14)70780-7 CrossRefPubMedGoogle Scholar
  76. Varela AR, Ferro G, Vredenburg J, Yanık M, Vieira L, Rizzo L, Lameiras C, Manaia CM (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161. doi: 10.1016/j.scitotenv.2013.02.015 CrossRefPubMedGoogle Scholar
  77. Varela AR, André S, Nunes OC, Manaia CM (2014) Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system. Water Res 54:327–36. doi: 10.1016/j.watres.2014.02.003 CrossRefPubMedGoogle Scholar
  78. Varela AR, Macedo GN, Nunes OC, Manaia CM (2015a) Genetic characterization of fluoroquinolone resistant Escherichia coli from urban streams and municipal and hospital effluents. FEMS Microbiol Ecol 91:fiv015–fiv015. doi: 10.1093/femsec/fiv015
  79. Varela AR, Manageiro V, Ferreira E, Guimarães MA, da Costa PM, Caniça M, Manaia CM (2015b) Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. J Glob Antimicrob Resist 8–11. doi:  10.1016/j.jgar.2015.07.008
  80. Varela AR, Nunes OC, Manaia CM (2016) Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. Sci Total Environ 542:665–671. doi: 10.1016/j.scitotenv.2015.10.124 CrossRefPubMedGoogle Scholar
  81. Vaz-Moreira I, Nunes OC, Manaia CM (2011) Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol 77:5697–5706. doi: 10.1128/AEM.00579-11 PubMedCentralCrossRefPubMedGoogle Scholar
  82. Vaz-Moreira I, Nunes OC, Manaia CM (2012) Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci Total Environ 426:366–74. doi: 10.1016/j.scitotenv.2012.03.046 CrossRefPubMedGoogle Scholar
  83. Vaz-Moreira I, Egas C, Nunes OC, Manaia CM (2013) Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods. FEMS Microbiol Ecol 83:361–374. doi: 10.1111/1574-6941.12002 CrossRefPubMedGoogle Scholar
  84. Vaz-Moreira I, Nunes OC, Manaia CM (2014) Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 1–18. doi:  10.1111/1574-6976.12062
  85. Vredenburg J, Varela AR, Hasan B, Bertilsson S, Olsen B, Narciso-da-Rocha C, Bonnedahl J, Stedt J, Da Costa PM, Manaia CM (2014) Quinolone-resistant Escherichia coli isolated from birds of prey in Portugal are genetically distinct from those isolated from water environments and gulls in Portugal, Spain and Sweden. Environ Microbiol 16(4):995–1004. doi: 10.1111/1462-2920.12231 CrossRefPubMedGoogle Scholar
  86. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362. doi: 10.1016/S1473-3099(11)70059-7 CrossRefPubMedGoogle Scholar
  87. Wang FH, Qiao M, Lv ZE, Guo GX, Jia Y, Su YH, Zhu YG (2014) Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. Environ Pollut 184:247–253. doi: 10.1016/j.envpol.2013.08.038 CrossRefPubMedGoogle Scholar
  88. Watkinson a J, Micalizzi GR, Bates JR, Costanzo SD (2007) Novel method for rapid assessment of antibiotic resistance in Escherichia coli isolates from environmental waters by use of a modified chromogenic agar. Appl Environ Microbiol 73:2224–2229. doi: 10.1128/AEM.02099-06 PubMedCentralCrossRefPubMedGoogle Scholar
  89. WHO (2004) Guidelines for Drinking-Water QualityGoogle Scholar
  90. WHO (2014) Antimicrobial resistance: global report on surveillance 2014Google Scholar
  91. Xi C, Zhang Y, Marrs CF, Ye W, Simon C, Foxman B, Nriagu J (2009) Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl Environ Microbiol 75:5714–5718. doi: 10.1128/AEM.00382-09 PubMedCentralCrossRefPubMedGoogle Scholar
  92. Xiong W, Sun Y, Zhang T, Ding X, Li Y, Wang M, Zeng Z (2015) Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb Ecol 70:425–432. doi: 10.1007/s00248-015-0583-x CrossRefPubMedGoogle Scholar
  93. Zhang T, Zhang M, Zhang X, Fang HH (2009) Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants. Environ Sci Technol 43:3455–3460. doi: 10.1021/es803309m CrossRefPubMedGoogle Scholar
  94. Zhang T, Shao M-F, Ye L (2012) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6:1137–1147. doi: 10.1038/ismej.2011.188 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Célia M. Manaia
    • 1
    Email author
  • Gonçalo Macedo
    • 1
  • Despo Fatta-Kassinos
    • 2
  • Olga C. Nunes
    • 3
  1. 1.CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de BiotecnologiaUniversidade Católica Portuguesa/PortoPortoPortugal
  2. 2.Department of Civil Engineering and Environmental Engineering and Nireas-International Water Research Centre, School of EngineeringUniversity of CyprusNicosiaCyprus
  3. 3.LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations