Skip to main content

Advertisement

Log in

EGFP reporter protein: its immunogenicity in Leishmania-infected BALB/c mice

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Optical reporter genes such as green fluorescent protein (GFP) and luciferase are efficiently and widely used in monitoring and studying the protective/therapeutic potential of candidate agents in leishmaniasis. But several observations and controversial reports have generated a main concern, whether enhanced GFP (EGFP) affects immune response. To address this issue, we studied the immunogenicity of EGFP in vivo by two lines of stably transfected parasites (Leishmania major EGFP or L. major EGFP-LUC) in BALB/c model and/or as a recombinant protein (rEGFP) produced in vitro by bacteria in parallel. Disease progression was followed by footpad swelling measurements and parasite burden in draining lymph nodes using microtitration assay and real-time PCR, and immune responses were also evaluated in spleen. EGFP-expressing parasites generated larger swellings in comparison with wild-type (L. major) while mice immunized with rEGFP and challenged with wild-type parasite were quite comparable in footpad swelling with control group without significant difference. However, both conventional and molecular approaches revealed no significant difference in parasite load between different groups. More importantly, no significant inflammatory responses were detected in groups with higher swelling size measured by interferon-γ (IFN-γ), interleukin (IL)-10, IL-5, and nitric oxide against frozen and thawed lysate of parasite as stimulator. Altogether, these results clearly revealed that EGFP protein expressed in prokaryotic and eukaryotic hosts is not an immunological reactive molecule and acts as a neutral protein without any side effects in mice. So, EGFP expressing Leishmania could be a safe and reliable substitution for wild-types that simplifies in situ follow-up and eliminates the animal scarification wherever needed during the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldwin TO (1996) Firefly luciferase: the structure is known, but the mystery remains. Structure 4:223–228

    Article  CAS  PubMed  Google Scholar 

  • Beattie L, Evans K, Kaye P, Smith D (2008) Transgenic Leishmania and the immune response to infection. Parasite Immunol 30:255–266

    Article  CAS  PubMed  Google Scholar 

  • Bennett CL, Misslitz A, Colledge L, Aebischer T, Blackburn CC (2001) Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. Eur J Immunol 31:876–883 doi:10.1002/1521-4141(200103)31:3<876::AID-IMMU876>3.0.CO;2-I 10.1002/1521-4141(200103)31:3&#60;876::AID-IMMU876&#62;3.0.CO;2-I

  • Bolhassani A, Taheri T, Taslimi Y, Zamanilui S, Zahedifard F, Seyed N, Torkashvand F, Vaziri B, Rafati S (2011) Fluorescent Leishmania species: development of stable GFP expression and its application for in vitro and in vivo studies. Exp Parasitol 127:637–645. doi:10.1016/j.exppara.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  • Breton M, Tremblay MJ, Ouellette M, Papadopoulou B (2005) Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun 73:6372–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buffet P, Sulahian A, Garin Y, Nassar N, Derouin F (1995) Culture microtitration: a sensitive method for quantifying Leishmania infantum in tissues of infected mice. Antimicrob Agents Chemother 39:2167–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo-Álvarez E, Guerrero NA, Álvarez-Velilla R, Prada CF, Requena JM, Punzón C, Llamas MÁ, Arévalo FJ, Rivas L, Fresno M (2012) Appraisal of a Leishmania major strain stably expressing mCherry fluorescent protein for both in vitro and in vivo studies of potential drugs and vaccine against cutaneous leishmaniasis. PLoS Negl Trop Dis 6:e1927

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa Sdos S, de Assis GM, Rossi-Bergmann B, Costa FT, Giorgio S (2011) Use of in vivo and in vitro systems to select Leishmania amazonensis expressing green fluorescent protein. Korean J Parasitol 49:357–364. doi:10.3347/kjp.2011.49.4.357

    Article  PubMed  Google Scholar 

  • Courret N, Lang T, Milon G, Antoine J-C (2003) Intradermal inoculations of low doses of Leishmania major and Leishmania amazonensis metacyclic promastigotes induce different immunoparasitic processes and status of protection in BALB/c mice. Int J Parasitol 33:1373–1383

    Article  CAS  PubMed  Google Scholar 

  • DaRocha WD, Silva RA, Bartholomeu DC, Pires SF, Freitas JM, Macedo AM, Vazquez MP, Levin MJ, Teixeira SM (2004) Expression of exogenous genes in Trypanosoma cruzi: improving vectors and electroporation protocols. Parasitol Res 92:113–120

    Article  PubMed  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318

    Article  CAS  PubMed  Google Scholar 

  • Eixarch H, Gómez A, Kádár E, George M, Martínez N, Espejo C, Pétriz J, Gimeno R, Barquinero J (2009) Transgene expression levels determine the immunogenicity of transduced hematopoietic grafts in partially myeloablated mice. Mol Ther 17:1904–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumarola L, Spinelli R, Brandonisio O (2004) in vitro assays for evaluation of drug activity against Leishmania spp. Res Microbiol 155:224–230

    Article  CAS  PubMed  Google Scholar 

  • Ha DS, Schwarz JK, Turco SJ, Beverley SM (1996) Use of the green fluorescent protein as a marker in transfected Leishmania. Mol Biochem Parasitol 77:57–64

    Article  CAS  PubMed  Google Scholar 

  • Han W, Unger W, Wauben M (2008) Identification of the immunodominant CTL epitope of EGFP in C57BL/6 mice. Gene Ther 15:700–701

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM Use of GFP for in vivo imaging: concepts and misconceptions. In: Biomedical Optics (BiOS) 2008. International Society for Optics and Photonics, pp 68680E–68687E

  • Jongco AM, Ting L-M, Thathy V, Mota MM, Kim K (2006) Improved transfection and new selectable markers for the rodent malaria parasite Plasmodium yoelii. Mol Biochem Parasitol 146:242–250

    Article  CAS  PubMed  Google Scholar 

  • Kamau SW, Grimm F, Hehl AB (2001) Expression of green fluorescent protein as a marker for effects of antileishmanial compounds in vitro. Antimicrob Agents Chemother 45:3654–3656. doi:10.1128/AAC.45.12.3654-3656.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike M, Yutoku Y, Koike A (2013) Ku80 attentuates cytotoxicity induced by green fluorescent protein transduction independently of non-homologous end joining. FEBS Open Bio 3:46–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang T, Goyard S, Lebastard M, Milon G (2005) Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol 7:383–392

    Article  CAS  PubMed  Google Scholar 

  • Liu H-S, Jan M-S, Chou C-K, Chen P-H, Ke N-J (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260:712–717

    Article  CAS  PubMed  Google Scholar 

  • Mehta SR, Huang R, Yang M, Zhang XQ, Kolli B, Chang KP, Hoffman RM, Goto Y, Badaro R, Schooley RT (2008) Real-time in vivo green fluorescent protein imaging of a murine leishmaniasis model as a new tool for Leishmania vaccine and drug discovery. Clin Vaccine Immunol 15:1764–1770. doi:10.1128/CVI.00270-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millington OR, Myburgh E, Mottram JC, Alexander J (2010) Imaging of the host/parasite interplay in cutaneous leishmaniasis. Exp Parasitol 126:310–317. doi:10.1016/j.exppara.2010.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) Green mice as a source of ubiquitous green cells. FEBS Lett 407:313–319

    Article  CAS  PubMed  Google Scholar 

  • Ortiz ML, Calero M, Patron CF, Castellanos L, Mendez E (1992) Imidazole-SDS-Zn reverse staining of proteins in gels containing or not SDS and microsequence of individual unmodified electroblotted proteins. FEBS Lett 296:300–304

    Article  CAS  PubMed  Google Scholar 

  • Re F, Srinivasan R, Igarashi T, Marincola F, Childs R (2004) Green fluorescent protein expression in dendritic cells enhances their immunogenicity and elicits specific cytotoxic T-cell responses in humans. Exp Hematol 32:210–217

    Article  CAS  PubMed  Google Scholar 

  • Reimão JQ, Trinconi CT, Yokoyama-Yasunaka JK, Miguel DC, Kalil SP, Uliana SR (2013) Parasite burden in Leishmania (Leishmania) amazonensis infected mice: validation of luciferase as a quantitative tool. J Microbiol Methods 93(2):95–101

    Article  PubMed  Google Scholar 

  • Rex T, Peet J, Surace E, Auricchio A, Bendo E, Lyubarsky A, Hughes T, Maguire A, Bennett J, Pugh E Jr (2004) EGFP levels and toxicity in transgenic and virus injected animals. Invest Ophthalmol Vis Sci 45:3707–3707

    Google Scholar 

  • Rocha M, Corrêa C, Melo M, Beverley S, Martins-Filho OA, Madureira AM-F, Soares R (2013) An alternative in vitro drug screening test using Leishmania amazonensis transfected with red fluorescent protein. Diagn Microbiol Infect Dis 75:282–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacks D, Anderson C (2004) Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev 201:225–238

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi S, Seyed N, Etemadzadeh M-H, Abediankenari S, Rafati S, Taheri T (2015) In vitro infectivity assessment by drug susceptibility comparison of recombinant Leishmania major expressing enhanced green fluorescent protein or EGFP-luciferase fused genes with wild-type parasite. Korean J Parasitol 53:385–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh N, Gupta R, Jaiswal AK, Sundar S, Dube A (2009) Transgenic Leishmania donovani clinical isolates expressing green fluorescent protein constitutively for rapid and reliable ex vivo drug screening. J Antimicrob Chemother 64:370–374. doi:10.1093/jac/dkp206

    Article  CAS  PubMed  Google Scholar 

  • Skelton D, Satake N, Kohn D (2001) The enhanced green fluorescent protein (eGFP) is minimally immunogenic in C57BL/6 mice. Gene Ther 8:1813–1814

    Article  CAS  PubMed  Google Scholar 

  • Späth GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99:97–103

    Article  PubMed  Google Scholar 

  • Steitz J, Soloff A, Barratt-Boyes S, Alber S, Watkins S, Okada H, Gambotto A (2010) Balb/c EGFP mice are tolerant against immunization utilizing recombinant adenoviral-based vectors encoding EGFP: a novel model for the study of tolerance mechanisms and vaccine efficacy. Mol Immunol 47:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Striepen B, He CY, Matrajt M, Soldati D, Roos DS (1998) Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Mol Biochem Parasitol 92:325–338

    Article  CAS  PubMed  Google Scholar 

  • Sultan AA, Thathy V, Nussenzweig V, Ménard R (1999) Green fluorescent protein as a marker in Plasmodium berghei transformation. Infect Immun 67:2602–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taghizadeh RR, Sherley JL (2008) CFP and YFP, but not GFP, provide stable fluorescent marking of rat hepatic adult stem cells. BioMed Research International 2008

  • Taheri T, Saberi Nik H, Seyed N, Doustdari F, Etemadzadeh M-H, Torkashvand F, Rafati S (2015) Generation of stable L. major +EGFP-LUC and simultaneous comparison between EGFP and luciferase sensitivity. Exp Parasitol 150:44–55

    Article  CAS  PubMed  Google Scholar 

  • Tiffen JC, Bailey CG, Ng C, Rasko JE, Holst J (2010) Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo. Mol Cancer 9:299. doi:10.1186/1476-4598-9-299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varela MRE, Lorena Muñoz D, Robledo SM, Kolli BK, Dutta S, Chang KP, Muskus C (2009) Leishmania (viannia) panamensis: an in vitro assay using the expression of GFP for screening of antileishmanial drug. Exp Parasitol 122:134–139

    Article  PubMed Central  Google Scholar 

  • Wallace LM, Moreo A, Clark KR, Harper SQ (2013) Dose-dependent toxicity of humanized Renilla reniformis GFP (hrGFP) limits its utility as a reporter gene in mouse muscle. Mol Ther Nucleic Acids 2:e86

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Dr. Behrouz Vaziri (Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran) for providing us with imaging facility and Shahram Alizadeh (Department of Immunotherapy and Vaccine Research in Leishmania, Pasteur Institute of Iran, Tehran, Iran) for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh Taheri.

Ethics declarations

All applicable institutional guidelines for the care and use of animals were followed. All mouse experiments including maintenance, feeding, handling program, and euthanasia were approved by the Institutional Animal Care and Research Advisory Committee of Pasteur Institute of Iran, based on the Specific National Ethical Guidelines for Biomedical Research issued by the Research and Technology Deputy of Ministry of Health and Medicinal Education of Iran. All mice were kept in plastic cages with free access to tap water and standard rodent pellets in an air-conditioned room under a constant 12:12 h light–dark cycle at room temperature. This article does not contain any studies with human participants performed by any of the authors.

Funding

This project was fulfilled by a grant from Pasteur Institute of Iran (grant number 653).

Conflict of interests

All authors of the manuscript declare that they have no conflict of interests.

Additional information

Samira Seif and Fereshteh Kazemi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seif, S., Kazemi, F., Gholami, E. et al. EGFP reporter protein: its immunogenicity in Leishmania-infected BALB/c mice. Appl Microbiol Biotechnol 100, 3923–3934 (2016). https://doi.org/10.1007/s00253-015-7201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7201-1

Keywords

Navigation