Skip to main content
Log in

Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although several scaling bioreactor models of mammalian cell cultures are suggested and described in the literature, they mostly lack a significant validation at pilot or manufacturing scale. The aim of this study is to validate an oscillating hydrodynamic stress loop system developed earlier by our group for the evaluation of the maximum operating range for stirring, based on a maximum tolerable hydrodynamic stress. A 300-L pilot-scale bioreactor for cultivation of a Sp2/0 cell line was used for this purpose. Prior to cultivations, a stress-sensitive particulate system was applied to determine the stress values generated by stirring and sparging. Pilot-scale data, collected from 7- to 28-Pa maximum stress conditions, were compared with data from classical 3-L cultivations and cultivations from the oscillating stress loop system. Results for the growth behavior, analyzed metabolites, productivity, and product quality showed a dependency on the different environmental stress conditions but not on reactor size. Pilot-scale conditions were very similar to those generated in the oscillating stress loop model confirming its predictive capability, including conditions at the edge of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams D, Korke R, Hu WW (2007) Application of stoichiometric and kinetic analyses to characterize cell growth and product formation. In: Pörtner R (ed) Animal cell biotechnology—methods and protocols, 2nd edn. Human Press Inc., Totowa, pp 269–284

    Google Scholar 

  • Al-Rubeai M, Singh RP, Goldman MH, Emery AN (1995) Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol Bioeng 45:463–472. doi:10.1002/bit.260450602

    Article  CAS  PubMed  Google Scholar 

  • Amanullah A, Nienow AW, Emery AN, McFarlane CM (1993) The use of Bacillus subtilis as an oxygen sensitive culture to simulate dissolved oxygen cycling in large scale fermenters. Trans I Chem E Part C:206–208

  • Berridge J, Seamon K, Venugopal S (2009) A-Mab: a case study in bioprocess development. 1–278

  • Boulton-Stone JM, Blake JR (1993) Gas bubbles bursting at a free surface. J Fluid Mech 254:437–466

    Article  CAS  Google Scholar 

  • Chalmers JJ, Bavarian F (1991) Microscopic visualization of insect cell-bubble interactions. II: the bubble film and bubble rupture. Biotechnol Prog 7:151–8. doi:10.1021/bp00008a010

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18:420–432. doi:10.1016/S0167-7799(00)01474-8

    Article  CAS  PubMed  Google Scholar 

  • Clincke M-F, Guedon E, Yen FT, Ogier V, Roitel O, Goergen J-L (2010) Effect of surfactant pluronic F-68 on CHO cell growth, metabolism, production, and glycosylation of human recombinant IFN-γ in mild operating conditions. Biotechnol Prog 27:181–90. doi:10.1002/btpr.503

    Article  PubMed  Google Scholar 

  • Croughan MS, Hamel JF, Wang DI (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29:130–41. doi:10.1002/bit.260290117

    Article  CAS  PubMed  Google Scholar 

  • Cruz PE, Cunha A, Peixoto CC, Clemente J, Moreira JL, Carrondo MJ (1998) Optimization of the production of virus-like particles in insect cells. Biotechnol Bioeng 60:408–18

    Article  CAS  PubMed  Google Scholar 

  • Ehrl L, Soos M, Wu H, Morbidelli M (2010) Effect of flow field heterogeneity in coagulators on aggregate size and structure. AIChE J 56:2573–2587. doi:10.1002/aic.12179

    Article  CAS  Google Scholar 

  • Emery AN, Jan DC, Al-Rubeai M (1995) Oxygenation of intensive cell-culture system. Appl Microbiol Biotechnol 43:1028–33

    Article  CAS  PubMed  Google Scholar 

  • Flickinger MC (2013) Upstream industrial biotechnology, 2 volume Set. John Wiley & Sons Inc, New York

    Google Scholar 

  • Gigout A, Buschmann MD, Jolicoeur M (2008) The fate of pluronic F-68 in chondrocytes and CHO cells. Biotechnol Bioeng 100:975–87. doi:10.1002/bit.21840

    Article  CAS  PubMed  Google Scholar 

  • Glacken MW, Fleischaker RJ, Sinskey AJ (1983) Mammalian cell culture: engineering principles and scale-up. Trends Biotechnol 1:102–108. doi:10.1016/0167-7799(83)90032-X

    Article  CAS  Google Scholar 

  • Godoy-Silva R, Chalmers JJ, Casnocha S, Bass LA, Ma N (2009a) Physiological responses of CHO cells to repetitive hydrodynamic stress. Biotechnol Bioeng 103:1103–17. doi:10.1002/bit.22339

    Article  CAS  PubMed  Google Scholar 

  • Godoy-Silva R, Mollet M, Chalmers JJ (2009b) Evaluation of the effect of chronic hydrodynamical stresses on cultures of suspensed CHO-6E6 cells. Biotechnol Bioeng 102:1119–30. doi:10.1002/bit.22146

    Article  CAS  PubMed  Google Scholar 

  • Handa-Corrigan A, Emery AN, Spier RE (1989) Effect of gas–liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles. Enzym Microb Technol 11:230–235. doi:10.1016/0141-0229(89)90097-5

    Article  CAS  Google Scholar 

  • Hua J, Erickson LE, Yiin TY, Glasgow LA (1993) A review of the effects of shear and interfacial phenomena on cell viability. Crit Rev Biotechnol 13:305–28. doi:10.3109/07388559309075700

    Article  CAS  PubMed  Google Scholar 

  • Hudcova V, Machon V, Nienow AW (1989) Gas–liquid dispersion with dual rushton turbine impellers. Biotechnol Bioeng 34:617–28. doi:10.1002/bit.260340506

    Article  CAS  PubMed  Google Scholar 

  • Humphrey A (1998) Shake flask to fermentor: what have we learned? Biotechnol Prog 14:3–7. doi:10.1021/bp970130k

    Article  CAS  Google Scholar 

  • Jöbses I, Martens D, Tramper J (1991) Lethal events during gas sparging in animal cell culture. Biotechnol Bioeng 37:484–90. doi:10.1002/bit.260370510

    Article  PubMed  Google Scholar 

  • Jordan M, Eppenberger HM, Sucker H, Widmer F, Einsele A (1994) Interactions between animal cells and gas bubbles: the influence of serum and pluronic F68 on the physical properties of the bubble surface. Biotechnol Bioeng 43:446–54. doi:10.1002/bit.260430603

    Article  CAS  PubMed  Google Scholar 

  • Ju L-K, Chase GG (1992) Improved scale-up strategies of bioreactors. Bioprocess Eng 8:49–53. doi:10.1007/BF00369263

    Article  CAS  Google Scholar 

  • Kunas KT, Papoutsakis ET (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 36:476–83. doi:10.1002/bit.260360507

    Article  CAS  PubMed  Google Scholar 

  • Le H, Kabbur S, Pollastrini L, Sun Z, Mills K, Johnson K, Karypis G, Hu W-S (2012) Multivariate analysis of cell culture bioprocess data—lactate consumption as process indicator. J Biotechnol 162:210–23. doi:10.1016/j.jbiotec.2012.08.021

    Article  CAS  PubMed  Google Scholar 

  • Leist C, Meyer H-P, Fiechter A (1986) Process control during the suspension culture of a human melanoma cell line in a mechanically stirred loop bioreactor. J Biotechnol 4:235–246. doi:10.1016/0168-1656(86)90028-3

    Article  CAS  Google Scholar 

  • Li F, Hashimura Y, Pendleton R, Harms J, Collins E, Lee B (2006) A systematic approach for scale-down model development and characterization of commercial cell culture processes. Biotechnol Prog 22:696–703. doi:10.1021/bp0504041

    Article  PubMed  Google Scholar 

  • Li F, Vijayasankaran N, Shen A (Y), Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–479. doi:10.4161/mabs.2.5.12720

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Wong CL, Vijayasankaran N, Hudson T, Amanullah A (2012) Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance. Biotechnol Bioeng 109:1173–86. doi:10.1002/bit.24389

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hu W, Wiltberger K, Ryll T, Li F (2013) Effects of bubble-liquid two-phase turbulent hydrodynamics on cell damage in sparged bioreactor. Biotechnol Prog. doi:10.1002/btpr.1790

    Google Scholar 

  • Ma N, Koelling KW, Chalmers JJ (2002) Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol Bioeng 80:428–37. doi:10.1002/bit.10611

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Chalmers JJ, Auniņs JG, Zhou W, Xie L (2004) Quantitative studies of cell-bubble interactions and cell damage at different pluronic F-68 and cell concentrations. Biotechnol Prog 20:1183–91. doi:10.1021/bp0342405

    Article  CAS  PubMed  Google Scholar 

  • Marks DM (2003) Equipment design considerations for large scale cell culture. Cytotechnology 42:21–33. doi:10.1023/A:1026103405618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier SJ, Hatton TA, Wang DI (1999) Cell death from bursting bubbles: role of cell attachment to rising bubbles in sparged reactors. Biotechnol Bioeng 62:468–78

    Article  CAS  PubMed  Google Scholar 

  • Michaels JD, Mallik AK, Papoutsakis ET (1996) Sparging and agitation-induced injury of cultured animals cells: do cell-to-bubble interactions in the bulk liquid injure cells? Biotechnol Bioeng 51:399–409. doi:10.1002/(SICI)1097-0290(19960820)51:4<399::AID-BIT3>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  • Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ (2007) Acute hydrodynamic forces and apoptosis: a complex question. Biotechnol Bioeng 98:772–88. doi:10.1002/bit.21476

    Article  CAS  PubMed  Google Scholar 

  • Mostafa SS, Gu X (2003) Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol Prog 19:45–51. doi:10.1021/bp0256263

    Article  CAS  PubMed  Google Scholar 

  • Murhammer DW, Goochee CF (1990) Sparged animal cell bioreactors: mechanism of cell damage and pluronic F-68 protection. Biotechnol Prog 6:391–7. doi:10.1021/bp00005a012

    Article  CAS  PubMed  Google Scholar 

  • Murhammer DW, Pfalzgraf EC (1992) Effects of pluronic F-68 on oxygen transport in an agitated, sparged bioreactor. Biotechnol Tech 6:199–202. doi:10.1007/BF02439343

    Article  CAS  Google Scholar 

  • Neunstoecklin B, Stettler M, Solacroup T, Broly H, Morbidelli M, Soos M (2015) Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture. J Biotechnol 194:100–9. doi:10.1016/j.jbiotec.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  • Nienow AW (1998) Hydrodynamics of stirred bioreactors. Appl Mech Rev 51:3–32. doi:10.1115/1.3098990

    Article  Google Scholar 

  • Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33. doi:10.1007/s10616-006-9005-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nienow AW, Scott WH, Hewitt CJ, Thomas CR, Lewis G, Amanullah A, Kiss R, Meier SJ (2013) Scale-down studies for assessing the impact of different stress parameters on growth and product quality during animal cell culture. Chem Eng Res Des. doi:10.1016/j.cherd.2013.04.002, 1–10

    Google Scholar 

  • Oh SKW, Nienow AW, Al-Rubeai M, Emery AN (1989) The effects of agitation intensity with and without continuous sparging on the growth and antibody production of hybridoma cells. J Biotechnol 12:45–61. doi:10.1016/0168-1656(89)90128-4

    Article  CAS  Google Scholar 

  • Oh SKW, Nienow AW, Al-Rubeai M, Emery AN (1992) Further studies of the culture of mouse hybridomas in an agitated bioreactor with and without continuous sparging. J Biotechnol 22:245–70

    Article  CAS  PubMed  Google Scholar 

  • Osman JJ, Birch J, Varley J (2002) The response of GS-NS0 myeloma cells to single and multiple pH perturbations. Biotechnol Bioeng 79:398–407. doi:10.1002/bit.10198

    Article  CAS  PubMed  Google Scholar 

  • Papac DI, Briggs JB, Chin ET, Jones AJ (1998) A high-throughput microscale method to release N-linked oligosaccharides from glycoproteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Glycobiology 8:445–54

    Article  CAS  PubMed  Google Scholar 

  • Paul EL, Atiemo-Obeng VA, Kresta SM (2003) Handbook of industrial mixing. Wiley, Hoboken, NJ, USA

    Book  Google Scholar 

  • Perry RH, Green DW, Maloney JO (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, NewYork

    Google Scholar 

  • Rapp E, Hennig R, Borowiak M, Kottler R, Reichl U (2011) High-throughput glycosylation pattern analysis of glycoproteins utilizing a multiplexing capillary-DNA-sequencer. Glycoconj J 28:234–235

    Google Scholar 

  • Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–35. doi:10.1007/s00253-005-0003-0

    Article  CAS  PubMed  Google Scholar 

  • Scott WH, Thomas CR, Hewitt CJ, Lewis G, Meier SJ, Amanullah A, Kiss R, Nienow AW (2012) Scale-down studies for assessing the impact of different stress parameters on growth and product quality during mammalian cell culture. In: 14th European conference on mixing. Warszawa, pp 431–436

  • Senger RS, Karim MN (2003) Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Biotechnol Prog 19:1199–209. doi:10.1021/bp025715f

    Article  CAS  PubMed  Google Scholar 

  • Serrato JA, Palomares LA, Meneses-Acosta A, Ramírez OT (2004) Heterogeneous conditions in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures. Biotechnol Bioeng 88:176–88. doi:10.1002/bit.20232

    Article  CAS  PubMed  Google Scholar 

  • Sieblist C, Jenzsch M, Pohlscheidt M (2013) Influence of pluronic(®) F68 on oxygen mass transfer. Biotechnol Prog 29:1278–88. doi:10.1021/btpr.1770

    Article  CAS  PubMed  Google Scholar 

  • Sieck JB, Cordes T, Budach WE, Rhiel MH, Suemeghy Z, Leist C, Villiger TK, Morbidelli M, Soos M (2013) Development of a scale-down model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions. J Biotechnol 164:41–9. doi:10.1016/j.jbiotec.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  • Soos M, Moussa AS, Ehrl L, Sefcik J, Wu H, Morbidelli M (2008) Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J Colloid Interface Sci 319:577–89. doi:10.1016/j.jcis.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  • Soos M, Kaufmann R, Winteler R, Kroupa M, Lüthi B (2013) Determination of maximum turbulent energy dissipation rate generated by a rushton impeller through large eddy simulation. AIChE J 59:3642–3658. doi:10.1002/aic.14206

    Article  CAS  Google Scholar 

  • Trinh K, Garcia-Briones M, Chalmers JJ, Hink F (1994) Quantification of damage to suspended insect cells as a result of bubble rupture. Biotechnol Bioeng 43:37–45. doi:10.1002/bit.260430106

    Article  CAS  PubMed  Google Scholar 

  • Villiger TK, Morbidelli M, Soos M (2015) Experimental determination of maximum effective hydrodynamic stress in multiphase flow using shear sensitive aggregates. AIChE J 61:1735–1744. doi:10.1002/aic.14753

    Article  CAS  Google Scholar 

  • Wu J (1995) Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives. J Biotechnol 43:81–94

    Article  CAS  PubMed  Google Scholar 

  • Xing ZZ, Kenty BMN, Li ZJ, Lee SS (2009) Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnol Bioeng 103:733–46. doi:10.1002/bit.22287

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lu C, Stasny B, Henley J, Guinto W, Gonzalez C, Gleason J, Fung M, Collopy B, Benjamino M, Gangi J, Hanson M, Ille E (2007) Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture. Biotechnol Bioeng 98:141–54. doi:10.1002/bit.21413

    Article  CAS  PubMed  Google Scholar 

  • Zagari F, Jordan M, Stettler M, Broly H, Wurm FM (2012) Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. New Biotechnol. doi:10.1016/j.nbt.2012.05.021

    Google Scholar 

  • Zhu Y, Cuenca JV, Zhou W, Varma A (2008) NS0 cell damage by high gas velocity sparging in protein-free and cholesterol-free cultures. Biotechnol Bioeng 101:751–60. doi:10.1002/bit.21950

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge SNF (200020_147137/1) for financial support of this project. Furthermore, Miroslav Soos was partially supported by the Specific University Research grant of UCT (grant number 20/2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massimo Morbidelli or Miroslav Soos.

Ethics declarations

Funding

This study was funded by SNF (grant number 200020_147137/1).

This study was partially funded by the Research grant of UCT (grant number 20/2015).

Conflict of interest

Benjamin Neunstoecklin declares that he has no conflict of interest.

Thomas K. Villiger declares that he has no conflict of interest.

Eric Lucas declares that he has no conflict of interest.

Matthieu Stettler declares that he has no conflict of interest.

Hervé Broly declares that he has no conflict of interest.

Massimo Morbidelli declares that he has no conflict of interest.

Miroslav Soos declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neunstoecklin, B., Villiger, T.K., Lucas, E. et al. Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture. Appl Microbiol Biotechnol 100, 3489–3498 (2016). https://doi.org/10.1007/s00253-015-7193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7193-x

Keywords