Skip to main content
Log in

L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074T

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An antialgal compound was isolated from the cultured broth of Streptomyces jiujiangensis JXJ 0074T by using bioassay methods. Based on the data of 1H-NMR, 13C-NMR, ESI-MS, and thin layer chromatography, the active compound was identified as L-valine, which showed antialgal activity mainly against Microcystis. L-valine exhibited greater antialgal activities than both L-lysine and copper sulfate (CuSO4) did on Microcystis aeruginosa lawn. However, M. aeruginosa recovered growth earlier with higher growth rate in L-valine treatment than in L-lysine treatment. L-valine dissipated completely within 2 days, much quicker than L-lysine (6 days), which resulted in the lysing of more than 80 % M. aeruginosa cells and the release of amount of intracellular microcystin-LR (MC-LR) within 2 days. As a resultant, the extracellular MC-LR content was more than twice of the control from day 1 to 5. Exposure to L-valine significantly promoted the synthesis of MC-LR. L-lysine also promoted the release and synthesis of MC-LR with much lesser efficiency than L-valine. L-valine could damage Microcystis severely, causing perforation and collapse of M. aeruginosa cells and decrease of the chlorophyll. The superoxide dismutase (SOD) activity in L-valine-treated cells of M. aeruginosa initially increased with 32.94 ± 3.37 % higher than the control after 36 h and then decreased quickly. However, the increase rate of superoxide anion radical (O2 ) was much higher than that of SOD, which resulted in serious lipid peroxidation and accumulation of malondialdehyde (MDA). To our knowledge, this is the first report showing L-valine active against cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181–182:441–446

    Article  PubMed  Google Scholar 

  • Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20

    Article  Google Scholar 

  • Chen JX, Wang XF (2006) Plant physiology experiment guidance, 2nd ed. South China University of Technology Press, Guangzhou, pp 68–77

    Google Scholar 

  • Chen YW, Chen KN, Hu YH (2006) Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. J Lake Sci 18:550–552

    Article  CAS  Google Scholar 

  • Choi HJ, Kim BH, Kim JD, Han MS (2005) Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol Control 33:335–343

    Article  Google Scholar 

  • Churro C, Fernandes AS, Alverca E, Sam-Bento F, Paulino S, Figueira VC, Bento AJ, Prabhakar S, Lobo AM, Martins LL, Mourato MP, Pereira P (2010) Effects of tryptamine on growth, ultrastructure, and oxidative stress of cyanobacteria and microalgae cultures. Hydrobiologia 649:195–206

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth a dynamics of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Harmful Algae 8:715–725

    Article  CAS  Google Scholar 

  • De Felice M, Levinthal M, Iaccarino M, Guardiol J (1979) Growth inhibition as a consequence of antagonism between related amino acid: effect of valine in Escherichia coli K12. Microbiol Rev 43:42–58

    PubMed  PubMed Central  Google Scholar 

  • EI-Sherbiny SA, Ghaly MF, EI-Ayoty YM, Fleafil NS (2007) Niromycin A: an antialgal substance produced by Streptomyces endus N40. Res J Microbiol 2:606–618

    Article  Google Scholar 

  • EI-Sherbiny SA, EI-Ayoty YM, Ghaly MF, Fleafil NS (2009) Evaluation for the production of antialgal substance from Streptomyces neyagawaensis. Biotechnology 8:405–415

    Article  Google Scholar 

  • Falconer IR, Humpage AR (1996) Tumour promotion by cyanobacterial toxins. Phycologia 35:74–79

    Article  Google Scholar 

  • Feng Y, Chang XX, Zhao LX, Li XP, Li WJ, Jiang Y (2013) Nanaomycin A methyl ester, an actinomycete metabolite: algicidal activity and the physiological response of Microcystis aeruginosa. Ecol Eng 53:306–312

    Article  Google Scholar 

  • Gao JF (2006) Plant physiology experiment guidance. Higher education press, Beijing, pp 221–223

    Google Scholar 

  • Hehmann A, Kaya K, Watanabe MM (2002) Selective control of Microcystis using an amino acid—a laboratory assay. J Appl Phycol 14:85–89

    Article  CAS  Google Scholar 

  • Hong Y, Hu HY, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91:262–269

    Article  CAS  PubMed  Google Scholar 

  • Hrudey S, Burch S, Burch M, Drikas M, Greorgy R et al (1999) Remedial measures. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. Routledge, London

    Google Scholar 

  • Jančula D, Drábková M, Černý J, Karásková M, Kořĺnková R, Rakusǎn J, Maršálek B (2008) Algicidal activity of phthalocyanines-screening of 31 compounds. Environ Toxicol 23:218–223

    Article  PubMed  Google Scholar 

  • Kaya K, Sano T (1999) Algicidal compounds in yeast extract as a component of microbial culture media. Phycologia 35:117–119

    Article  Google Scholar 

  • Kaya K, Liu YD, Shen YW, Xiao BD, Sano T (2005) Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment. Environ Toxicol 20:170–178

    Article  CAS  PubMed  Google Scholar 

  • Kumar HD (1964) Streptomycin and penicillin-induced inhibition of growth and pigment production in blue-green algae and production of strains of Anacystis nidulans resistant to these antibiotics. J Exp Bot 15:2232–2250

    Article  Google Scholar 

  • Liu ES (2010) Analysis on biomanipulation, non-traditional biomanipulation and discussion of the countermeasures of biomanipulation application in water. J Lake Sci 22:307–314

    CAS  Google Scholar 

  • Liu Y, Gao BY, Yue QY, Guan YT, Wang Y, Huang LH (2012) Influences of two antibiotic contaminants on the production, release and toxicity of microcystins. Ecotox Environ Saf 77:79–87

    Article  CAS  Google Scholar 

  • Liu Y, Zhang J, Gao BY, Feng SP (2014) Combined effects of two antibiotic contaminants on Microcystis aeruginosa. J Hazard Mater 279:148–155

    Article  CAS  PubMed  Google Scholar 

  • Matthijs HC, Visser PM, Reeze B, Meeuse J, Slot PC, Wijn G, Talens R, Huisman J (2012) Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res 46:1460–1472

    Article  CAS  PubMed  Google Scholar 

  • Meepagala KM, Schrader KK, Wedge DE, Duke SO (2005) Algicidal and antifungal compounds from the roots of Ruta graveolens and synthesis of their analogs. Phytochemistry 66:2689–2695

  • Mizuno CS, Schrader KK, Rimando AM (2008) Algicidal activity of stilbene analogues. J Agric Food Chem 56:9140–9145

    Article  CAS  PubMed  Google Scholar 

  • Nybom SM, Salminen SJ, Meriluoto JAO (2007) Removal of microcystin-LR by strains of metabolically active probiotic bacteria. FEMS Microbiol Lett 270:27–33

    Article  CAS  PubMed  Google Scholar 

  • Ou H, Gao N, Wei C, Deng Y, Qiao J (2012) Immediate and long-term impacts of potassium permanganate on photosynthetic activity, survival and microcystin-LR release risk of Microcystis aeruginosa. J Hazard Mater 219–220:267–275

    Article  PubMed  Google Scholar 

  • Pan G, Zhang MM, Chen H, Zou H, Yan H (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ Pollut 141:195–200

    Article  CAS  PubMed  Google Scholar 

  • Pichardo S, Jos A, Zurita JL, Salguero M, Cameán AM, Repetto G (2007) Acute and subacute toxic effects produced by microcystin-YR on the fish cell lines RTG-2 and PLHC-1. Toxicol in Vitro 21:1460–1467

    Article  CAS  PubMed  Google Scholar 

  • Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds—tables of spectral data. Springer-Verlag, Berlin

    Google Scholar 

  • Qian H, Li JJ, Pan XJ, Sun ZQ, Ye CB, Jin GQ, Fu ZW (2012) Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ Toxicol 27:229–237

    Article  CAS  PubMed  Google Scholar 

  • Safferman RS, Morris M (1962) Evaluation of natural products for algicidal properties. Appl Microbiol 10:289–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader KK, Duke SO, Kingsbury SK, Tucker CS, Duke MV, Dionigi CP, Millie DF, Zimba PV (2000) Evaluation of ferulic acid for controlling the musty-odor cyanobacterium, Oscillatoria perornata, in aquaculture ponds. J Appl Aquac 10:1–16

    Article  Google Scholar 

  • Schrader KK, Rimando AM, Duke SO (2002) Natural compounds for the management of undesirable freshwater phytoplankton blooms. Stud Nat Prod Chem 26:351–389

    Article  CAS  Google Scholar 

  • Schrader KK, Nanayakkara NPD, Tucker CS, Rimando AM, Ganzera M, Schaneberg BT (2003) Novel derivatives of 9, 10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl Environ Microbiol 69:5319–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Triantis TM, Antoniou MG, He XX, Pelaez M, Han CS, Song WH, O’Shea KE, de la Cruz AA, Kaloudis T, Hiskia A, Dionysiou DD (2012) Destruction of microcystins by conventional and advanced oxidation processes: a review. Sep Purif Technol 91:3–17

    Article  CAS  Google Scholar 

  • Sigee DC, Glenn R, Andrews MJ, Bellinger EG, Butler RD, Epton HAS, Hendry RD (1999) Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395(396):161–172

    Article  Google Scholar 

  • Takamura Y, Yamada T, Kimoto A, Kanehama N, Tanaka T, Nakadaira S, Yagi O (2004) Growth inhibition of Microcystis cyanobacteria by L-lysine and disappearance of natural Microcystis blooms with spraying. Microbes Environ 19:31–39

    Article  Google Scholar 

  • Vasconcelos VM, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1996) Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Res 30:2377–2384

    Article  CAS  Google Scholar 

  • Wang JY, Zhu SG, Xu CF (2002) Biochemistry, 3 rd ed. Higher education press, Beijing, pp 96–102

    Google Scholar 

  • Whyte LG, Maule A, Cullimore D (1985) Method for isolating cyanobacterial-lysing Streptomycetes from soil. J Appl Bacteriol 58:195–197

    Article  Google Scholar 

  • Wu XG, Joyce EM, Mason TJ (2011) The effects of ultrasound on cyanobacteria. Harmful Algae 10:738–743

    Article  Google Scholar 

  • Xu YF, Yang J, Wang YL, Liu F, Jia JP (2006) The effects of jet cavitation on the growth of Microcystis aeruginosa. J Environ Sci Health A 41:2345–2358

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kouchiwa T, Hodoki Y (1998) Distribution and identification of actinomycetes lysing cyanobacteria in a eutrotrophic lake. J App Phycol 10:391–397

    Article  Google Scholar 

  • Yan R, Wu YH, Ji HL, Fang YM, Kerr PG, Yang LZ (2011) The decoction of Radix Astragali inhibits the growth of Microcystis aeruginosa. Ecotoxicol Environ Saf 74:1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Yu TT, Zhang BH, Li HQ, Guo QG, Li WJ (2011) Alga-lysing activity of a strain of actinomycete to Microcystis aeruginosa. J Ecol Rural Environ 27:58–63

    CAS  Google Scholar 

  • Žegura B, Štraser A, Filipič M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins—a review. Mutat Res 727:16–41

    Article  PubMed  Google Scholar 

  • Zhang BH, Cheng J, Li L, Zhang YG, Li HQ, Yang JY, Li WJ (2014) Streptomyces jiujiangensis sp. nov., isolated from soil in South China. Antonie Van Leeuwenhoek 105:763–770

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Cheng J, Chen W, Li HQ, Yang JY, Park DJ, Kim CJ, Shen R, Duan YQ, Li WJ (2015a) Streptomyces lushanensis sp. nov., a novel actinomycete with anti-cyanobacterial activity. J Antibiot 68:5–8

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Chen W, Li HQ, Zhou EM, Hu WY, Duan YQ, Mohamad OA, Gao R, Li WJ (2015b) An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074T. Appl Microbiol Biotechnol 99:7673–7683

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Shao Y, Gao N, Deng Y, Qiao J, Ou H, Deng J (2013) Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa. Sci Total Environ 463–464:111–119

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (No. 31060010), projects of China tobacco Yunnan industrial Co. Ltd. (2014YL01 and 2015CP01), the Deanship of Scientific Research at King Saud University through the research group no. RGP-205, Programs of the Education Department (No. GJJ10619) and the Science and Technology Department (No. 20111BBG70012-4) and the Environmental Conservation Department (NO. JXHBKJ2013-14) of Jiangxi Province of China, and project of Jiujiang University (No. 201511). W-J Li was also supported by project supported by Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme (2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Gao or Wen-Jun Li.

Ethics declarations

Ethical statement/conflict of interest

It is the original work of the authors. The work described has not been submitted elsewhere for publication, in whole or in part, and all authors listed carry out the data analysis and manuscript writing and “This article does not contain any studies with human participants or animals performed by any of the authors”. Moreover, all authors read and approved the final manuscript. The authors declare that they have no direct or indirect conflicts of interest.

Additional information

Wei Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BH., Chen, W., Li, HQ. et al. L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074T . Appl Microbiol Biotechnol 100, 4627–4636 (2016). https://doi.org/10.1007/s00253-015-7150-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7150-8

Keywords

Navigation